3/2/22

Objectives

Version Control Systems

Mar 2, 2022 Sprenkle - CSCI397

FaCEbOOk Bug Memory shown 2022,

. Picture from 2020
Your memories on Facebook

Sara, we care about you and the memories you share here. We thought you'd like to
look back on this post from 1 year ago.

® 1 Year Ago

Mar 2, 2022 Sprenkle - CSCI111 2




3/2/22

Review: Version Control Systems

What is a Version Control Systems?

What are their features?
What are their components?
What are their benefits?

What are the differences between a centralized
and a distributed VCS?

True or False: Git 1= GitHub

Mar 2, 2022 Sprenkle - CSCI397

Review: VCS Features

Collaborate on code with a team

Roll back/restore older version of code
Granularity: Individual files or collection of files

Store ownership of files/changes and when occurred
Record reasons for changes

Track progress

Each developer has own sandbox of code
Maintaining multiple branches

Mar 2, 2022 Sprenkle - CSCI397




3/2/22

Review: Centralized vs Distributed VCS

Centralized
One central repository: the gold
standard
All updates made against central
repo
No access to repo? No updates

Must sync with central repo
before adding updates

Examples: CVS, Subversion

Mar 2, 2022

Decentralized
Multiple copies/clones/forks of
repositories
You can always have a local repo
You can optionally have a central
repo
More distributed sharing options
Examples: Git, Mercurial, Bazaar

Sprenkle - CSCI397

Review: Centralized vs Distributed

Distributed Centralized —
- Working
Repository Repository Copy
(files, metadata: (files, metadata: _
Authoritative changes, changes
: ’ updates
Repository comments, ...) comments, ...)
(files, metadata:
changes, Worki
comments, ...) Repository commits :;pl;g

(files, metadata:
changes,
comments, ...)

Mar 2, 2022

Sprenkle - CSCI397




3/2/22

Review:
Centralized vs Distributed Repo Tradeoffs

CVCS: Mostly remote DVCS: Mostly local operations
operations (faster)
Requires network connectivity Does not require network
for updates, commits connectivity
More expensive operations Whole copy of the repository
Less space for each client More space for each “client”

VCS Design Decision: Who can make changes?

Mar 2, 2022 Sprenkle - CSCI397

Version Control Systems
Another TLA for VCS is SCM

SCM: Source Code Management
Older: Software Configuration Management

Mar 2, 2022 Sprenkle - CSCI397




3/2/22

Repository Organization

In CVS and Subversion, typically organize top
level something like

trunk/ (main)
branches/

tags/

Mar 2, 2022 Sprenkle - CSCI397

What Should Be Under Version Control?
What should not?

Put another way: What files should you add to
your Git repository?
But, not a git-specific question

Mar 2, 2022 Sprenkle - CSCI397

10



3/2/22

What Should Be Under Version Control?

Yes: Nope:
Text-based things made by Automatically built things
humans executables, object files, jar files
Source code Temporary files
Scripts Sensitive data: passwords,

Files that aren’t going to private ssh keys

change Settings, log files
Most VCSs have ways to ignore these

Mar 2, 2022 Sprenkle - CSCI397

11

“Coven: Brewing Better Collaboration through

Software Configuration Management”
By Mark Chu-Carroll and Sara Sprenkle, Foundations of Software Engineering, 2000

Abstract: Our work focuses on building tools to support collaborative software
development. We are building a new programming environment with integrated
software configuration management which provides a variety of features to help
programming teams coordinate their work. In this paper, we detail a hierarchy-
based software configuration management system called Coven, which acts as a
collaborative medium for allowing teams of programmers to cooperate. By
providing a family of inter-related mechanisms, our system provides powerful
support for cooperation and coordination in a manner which matches the
structure of development teams.

https://dl.acm.org/doi/10.1145/355045.355058

Mar 2, 2022

12



3/2/22

What is Coven?

COllaborative Versioning ENvironment

goal: wide-area collaboration among many users
central coordination space for collaborative prog.
env’t

primary researcher: Mark Chu-Carroll, IBM

SPIDER: Coven January 19, 2000

13

The World Then

Emacs and vi(m) existed but Eclipse didn’t
But Eclipse’s predecessor at IBM did
CVS existed but Subversion (2000) and Git (2010)
didn’t
Subversion: now an Apache Software Foundation
Project
Git’s predessor BitKeeper did exist

“File based systems like RCS and CVS provide a mechanism
called tagging, which identifies a version of the project.”

14



3/2/22

Version Control System

distinguishing features
mediation model
artifact granularity
consistency model

SPIDER: Coven January 19, 2000

15

Design Issues

version-control systems
file-based

traditional source code organization

granularity - too big
repository-based

granularity - right

tied to programming environment

SPIDER: Coven January 19, 2000

16



3/2/22

Design Issues

source management
lock-based
optimistic (lockless)

project consistency

grouping together program pieces
belonging to the same version

SPIDER: Coven January 19, 2000

17

Idea: Fragments + Virtual Source Files

Problem/Motivation
Source code files can be large
Developers may only want to edit fragments of
files
Developers may want to work on fragments of
multiple files (horizontal cut)
Break source code into fragments (PL-
dependent)
Query source code for fragments to create
virtual source files

ile

'l'l
(%]

i

Virtual Source File

i

Mar 2, 2022 Sprenkle - CSCI397

18



3/2/22

Example Java Fragments

package test;

import java.io.*;
import java.util.*;

public class Foo extends Bar implements IBar
protected int _index;

protected String _name;
public static void main(C String args[]) {
. -

SPIDER: Coven January 19, 2000

19

Idea: Fragments + Virtual Source Files

Different developers can look at
different parts of files

o ) Files
Principle: Separation of Concerns = :

A file can be made up of multiple :

—

concerns ConcernlVSF Concern2VSF
1 L]
—1 ]
—1

Mar 2, 2022 Sprenkle - CSCI397

20

10



3/2/22

Summary

Coven innovations - better
supports collaborative
development

flexible, adaptable

prevents programmer
collaboration problems

SPIDER: Coven January 19, 2000

21

VCS Wrap Up

Design choices

Repository management
Artifacts granularity
Consistency/collaboration models

Git is not the last version control system

Mar 2, 2022 Sprenkle - CSCI397

22

11



3/2/22

Putting the Pieces Together

We talked about issue tracking, Scrum boards,
and version control, disjointly

How do these tools fit together?

Mar 2, 2022 Sprenkle - CSCI397

23

Putting the Pieces Together

Issue Tracker

E=an

Mar 2, 2022 Sprenkle - CSCI397

24

12



3/2/22

Putting the Pieces Together

j|> Scrum Board
I In progress:

Product Backlog

Issue Tracker

Mar 2, 2022 Sprenkle - CSCI397

25

Putting the Pieces Together

j‘> Scrum Board
‘ In progress:

Discussion

Issue Tracker

Version

Branch named by
Control

Issue #1

Mar 2, 2022 Sprenkle - CSCI397

26

13



3/2/22

Putting the Pieces Together

-

Issue Tracker
Iemn -
Discussion

Commit:
fixed Issue #1

Mar 2, 2022 Sprenkle - CSCI397

Scrum Board

Version
Control

27

Putting the Pieces Together

Planning

N

Issue Tracker

IEmn -

Scrum Board

Discussion
Commit: Version
fixed Issue #1 Control
Execution

Mar 2, 2022 Sprenkle - CSCI397

28

14



3/2/22

Pluggable Pieces and Blurred Lines

| attempt to define each of these components rigidly
But the edges aren’t always clear

Various possibilities for combining components and
hybrids
Examples:

Jira’s issue tracking with Scrum or Kanban boards and various
version tracking systems

GitHub’s Marketplace has a variety of tools available

Mar 2, 2022 Sprenkle - CSCI397

29

Analogy: Cookie Brownies

Peanut Butter Cookie Brownies

Pretty good
But definitely better peanut butter cookies, better
brownies
Which is better? —
How is this related to
PB Cookie Brownies? software tools?

PB Cookies + Brownies?

Mar 2, 2022 Sprenkle - CSCI397

30

15



3/2/22

Tradeoffs

All-in-One Solutions

Mar 2, 2022

Integrating Solutions

Sprenkle - CSCI397

31
Tradeoffs
All-in-One Solutions Integrating Solutions
Convenient! Separation of Concerns/Single
Updates won’t break individual Responsibility Principle
pieces Each component is really good
Its components might not Can easily* switch between
(individually) be the best components
Do you need all of these Integrations can be tricky
Dependence on multiple things
Will upgrades break integrations?
Mar 2, 2022 Sprenkle - CSCI397
32

16



3/2/22

Other Analogies

Swiss army knife vs individual tools

How does a swiss army knife compare to a phone and

its apps?

Would you rather see a generalist or specialist?

Mar 2, 2022

Sprenkle - CSCI397

33

How Should You Choose?

Consider costs:

Purchasing software/service
Hosting software/service
Maintenance (number of people needed, upgrading,

integrations)

Ease of use (in general, integrations)
Do you need all those components in the all-in-one

solution?

Can | add and remove components in the all-in-one?

Mar 2, 2022

Sprenkle - CSCI397

34

17



3/2/22

Looking Ahead

Watch Software Engineering at Google talk

Answer questions, submit on Canvas

Before class on Friday

Mar 2, 2022

Sprenkle - CSCI397

35

18



