
11/13/17	

1	

Today’s	Objec2ves	
• Wrap	up	Distributed	File	Systems	
• Timing	

Nov	13,	2017	 1	Sprenkle	-	CSCI325	

Sakai	Poll	Exam	Replacement	Day	Results	
• Wednesday,	November	15		-		2		-	14%		
• Friday,	November	17	-	12	-	86%		

• Last	class	before	break:	Wednesday	

• Exam	will	go	out	tomorrow	
• Can	start	Wednesday	at	midnight	

Nov	13,	2017	 Sprenkle	-	CSCI325	 2	

11/13/17	

2	

Inverted	Index	Project	
• Due	tonight	
• Like	old-2mey	
programming	
Ø Want	to	make	sure	
your	program	is	
really	good	before	
running	

Ø Takes	a	long	2me	to	
get	feedback	

Nov	13,	2017	 Sprenkle	-	CSCI325	 3	

http://www-03.ibm.com/ibm/
history/ibm100/us/en/icons/
punchcard/breakthroughs/

Review	
• What	is	the	mo2va2on	for	a	distributed	file	
system	(DFS)?	

• How	does	a	DFS	make	remote	files	look	the	same	
as	local	files?	

• What	are	some	policies	that	DFS	can	use	when	
managing	file	caches?	
Ø Consider:	what	happens	when	a	client	updates	a	file?	

• What	is	NFS?	
Ø What	is	its	protocol	built	on?	

Nov	13,	2017	 Sprenkle	-	CSCI325	 4	

11/13/17	

3	

Review:	Sun	NFS	
• Sun	Microsystem’s	Network	File	System	

Ø Widely	adopted	in	industry	and	academia	since	1985	
Ø (we	use	it)	

• All	NFS	implementa2ons	support	NFS	protocol	
Ø Currently	on	version	4	
Ø Protocol	is	a	set	of	RPCs	that	provide	mechanisms	for	
clients	to	perform	opera2ons	on	remote	files	

Ø OS-independent	but	originally	designed	for	UNIX	

Nov	13,	2017	 Sprenkle	-	CSCI325	 5	

Network	File	System	(NFS)	

Nov	13,	2017	 Sprenkle	-	CSCI325	 6	

VFS=Virtual	File	System	

kernel

11/13/17	

4	

VFS:	Vnodes	
• Every	file	or	directory	in	ac2ve	use	is	represented	
by	a	virtual	node	or	vnode	object	in	memory		
Ø Each	file	system	maintains	a	cache	of	its	vnodes	
Ø Each	vnode	has	a	standard	file	adribute	struct	
Ø Each	standard	struct	points	at	file-system-specific	file	
adribute	struct	

Nov	13,	2017	 Sprenkle	-	CSCI325	 7	

Standard	Struct	
FS-specific	Struct	

Stateless	NFS	
• NFS	server	maintains	no	in-memory	hard	state	

Ø Only	hard	state	is	stable	file	system	image	on	disk	
Ø No	record	of	clients	or	open	files	
Ø No	implicit	arguments	to	requests	(no	server-
maintained	file	offsets)	

Ø No	write-back	caching	on	server	
Ø No	record	of	recently	processed	requests	

• Why?	

Nov	13,	2017	 Sprenkle	-	CSCI325	 8	

11/13/17	

5	

Stateless	NFS	
• NFS	server	maintains	no	in-memory	hard	state	

Ø Only	hard	state	is	stable	file	system	image	on	disk	
Ø No	record	of	clients	or	open	files	
Ø No	implicit	arguments	to	requests	(no	server-
maintained	file	offsets)	

Ø No	write-back	caching	on	server	
Ø No	record	of	recently	processed	requests	

• Why?		Simple	recovery	a2er	server	failure!	

Nov	13,	2017	 Sprenkle	-	CSCI325	 9	

Recovery	in	NFS	
•  If	server	fails	and	restarts,	no	need	to	rebuild	in-
state	memory	state	on	server	
Ø Client	reestablishes	contact	
Ø Client	retransmits	pending	requests	

• Classical	NFS	used	UDP	
Ø Server	failure	is	transparent	to	client	since	there	is	
no	“connec2on”	

Ø Sun	RPC	masks	network	errors	by	retransmiing	
requests	ajer	an	adap2ve	2meout	
• Dropped	packets	are	indis2nguishable	from	crashed	
server	to	client	

Nov	13,	2017	 Sprenkle	-	CSCI325	 10	

11/13/17	

6	

NFS	Server	Caching	
•  Cache	read	results,	writes,	directory	opera2ons	
• Write-through	cache	vs.	write-back	cache?	

Ø Write	through:	Each	update	wriden	to	disk	immediately	
Ø When	write	opera2on	returns,	client	is	guaranteed	stable	

update		

•  Pros:	
Ø  Stateless	(easy	to	implement),	no	data	lost	on	crash	

•  Cons:	
Ø  Slow:	client	must	wait	for	disk	write	

Nov	13,	2017	 Sprenkle	-	CSCI325	 11	

Drawbacks	
• Stateless	nature	has	obvious	advantages	but	also	
some	drawbacks	
Ø Recovery	by	retransmission	constrains	server	
interface		
• “Execute	mostly	once”	seman2cs	=	send	and	pray	
• Execu2ons	usually	only	happen	once,	but	not	
guaranteed	

Ø Update	opera2ons	are	disk-limited	(write-through	
cache)	

Ø Server	cannot	help	in	client	cache	consistency	

Nov	13,	2017	 Sprenkle	-	CSCI325	 12	

11/13/17	

7	

NFS	Client	Caching	
• Clients	cache	read,	writes,	and	directory	ops	

Ø What	if	mul2ple	people	upda2ng	the	same	file	at	the	
same	2me?		Consistency	problems!	

• NFS	approach:	
Ø Server	maintains	last	modifica2on	2me/per	file	
Ø Client	remembers	2me	it	ini2ally	retrieved	data	
Ø On	file	access,	client	checks	2mestamp	against	server	
(every	3-30	seconds)	
• Unnecessary	2mestamp	checking	
• How	long	to	set	the	2meout?		What	is	the	tradeoff?	

Nov	13,	2017	 Sprenkle	-	CSCI325	 13	

TIME	AND	GLOBAL	STATE	

Nov	13,	2017	 Sprenkle	-	CSCI325	 14	

11/13/17	

8	

Time	
• Time	is	an	important	prac2cal	issue	in	distributed	
systems	
Ø Example:	ojen	require	computers	to	2mestamp	
electronic	commerce	transac2ons	

Nov	13,	2017	 Sprenkle	-	CSCI325	 15	

Why is that problematic?

Time	
•  Time	in	an	important	prac2cal	issue	in	distributed	
systems	
Ø  Example:	ojen	require	computers	to	2mestamp	electronic	

commerce	transac2ons	

•  But	2me	can	be	problema2c		
Ø  Physical	clocks	in	computers	are	not	all	synchronized	
Ø  There	is	no	global	clock	in	distributed	systems	

•  Need	a	way	to	order	events	and	approximate	2me	
synchroniza2on	in	distributed	systems	

Nov	13,	2017	 Sprenkle	-	CSCI325	 16	

11/13/17	

9	

Process	States	
• How	can	we	order	and	2mestamp	the	events	
that	occur	across	all	distributed	processes?	

• Assume	a	distributed	system	consists	of	N	
processes		
Ø Each	process	executes	on	a	single	processor	

• Memory	is	not	shared	
Ø Each	process	p	has	state	s	

•  Includes	values	of	all	variables	and	objects	in	p	
Ø Processes	can	only	communicate	via	sockets	

Nov	13,	2017	 Sprenkle	-	CSCI325	 17	

Events	
•  An	event	is	an	occurrence	of	a	single	ac2on	that	a	
process	carries	out	as	it	executes	
Ø  Either	a	communica2on	ac2on	or	state-changing	ac2on	

•  Happens-before	relaIonship:	→	
Ø Order	events	within	a	single	process	so	that	e→e’	iff		

e	occurs	before	e’	

•  Define	the	history	of	process	pi	to	be	the	series	of	
events	within	it,	ordered	by	rela2on	→	
Ø  history(pi)	=	hi	=	<ei0,	ei1,	ei2,	…>	

Nov	13,	2017	 Sprenkle	-	CSCI325	 18	

11/13/17	

10	

Time	Design	Ques2ons	
• How	accurate	does	2me	need	to	be?	
• How	is	2me	used	in	a	distributed	system?		
• What	does	“A	happened	before	B”	mean	in	a	
distributed	system?	

Nov	13,	2017	 Sprenkle	-	CSCI325	 19	

Clocks	
•  Ordering	events	in	a	process	is	not	the	same	as	
assigning	a	2mestamp	to	them	

•  Timestamps	require	date	and	2me	of	day	
•  Computers	have	hardware	clocks	
•  OS	reads	hardware	clock	and	adds	some	offset	to	
produce	so-ware	clock	

•  Thus	we	can	2mestamp	events	using	sojware	clocks	
only	if	the	clock	resolu2on	is	smaller	than	interval	
between	events	

• Works	for	one	process	but	will	it	work	for	N	distributed	
processes?	

Nov	13,	2017	 Sprenkle	-	CSCI325	 20	

11/13/17	

11	

Problems	with	Clocks	in	Distributed	Systems	
•  Clock	skew	

Ø  Instantaneous	difference	between	readings	of	any	2	clocks	

•  Clock	drij	
Ø  Problem	that	occurs	when	two	or	more	clocks	count	2me	at	

different	rates	

Network

Nov	13,	2017	 Sprenkle	-	CSCI325	 21	

Research Question: Can we synchronize physical clocks across
computers to provide global event ordering across processes?

Synchronizing	Physical	Clocks	
•  External	synchroniza2on	

Ø  Synchronize	physical	clocks	with	some	external	source	of	2me	
Ø UTC	=	Coordinated	Universal	Time	
	

•  Internal	synchroniza2on	
Ø  Synchronize	using	the	2me	between	events	that	occur	on	

different	computers	(“logical	clocks”)	
Ø  For	clocks	Ci	and	Cj,	if	we	know	Ci	-	Cj	<	D,	then	we	know	the	

clocks	agree	within	the	bound	D	

•  Internal	synchroniza2on	does	not	imply	external	
synchroniza2on!	
Ø  But	external	synchroniza2on	does	imply	internal	

synchroniza2on	

Nov	13,	2017	 Sprenkle	-	CSCI325	 22	

11/13/17	

12	

Synchronous	Systems	
•  Simplest	possible	synchroniza2on	case:	
internal	synchroniza2on	in	synchronous	systems	
Ø  Sync	systems	usually	use	blocking	send	and	recv	calls	

•  In	a	synchronous	system,	we	know:	
Ø Max	drij	rate	of	clocks	
Ø Max	transmission	delay	
Ø  Time	to	execute	each	step	of	the	process	

•  Synchroniza2on	
Ø One	process	sends	2me	t	to	other	process	in	message	m	
Ø  Receiving	process	sets	clock	to	be	t	+	transmission_2me	of	m	

Nov	13,	2017	 Sprenkle	-	CSCI325	 23	

Problems?

Synchronous	Systems	
•  Transmission	2me	is	subject	to	varia2on!	
•  But	we	know	the	min	and	max	transmission	2me		
•  Uncertainty	in	transmission	2me	=	max	-	min	
•  Set	clock	halfway	between:	t	+	(max-min)/2		
•  Skew	is	at	most	(max-min)/2	
•  In	general,	for	N	clocks,	op2mum	bound	on	clock	skew	
is	(max-min)(1-1/N)		

Nov	13,	2017	 Sprenkle	-	CSCI325	 24	

But, most systems are asynchronous…

11/13/17	

13	

Cris2an’s	Method	
•  Most	distributed	systems	are	asynchronous	à	unbounded	

transmission	delay	
•  Round	trip	2mes	(RTTs)	are	ojen	reasonably	short	(in	LANs)	
•  Cris2an	suggested	a	probabilis2c	algorithm	using	a	2me	server	

for	external	synchroniza2on	in	asynchronous	systems	
Ø  Process	requests	2me	in	mr	and	gets	response	in	mt	
Ø  t	is	2me	according	to	S	(the	2me	server)	
Ø  Tround	is	2me	between	sending	mr	and	receiving	mt	
Ø  Process	sets	clock	to	be	t	+	Tround	/2		

Nov	13,	2017	 Sprenkle	-	CSCI325	 25	

m r

m t
p Time server,S

Problems?

Problems	
• Time	server	is	single	point	of	failure!	

Ø But	can	replicate…	
Ø …as	long	as	the	replicas	stay	synchronized	

• Faulty	2me	server	could	wreak	havoc	on	
distributed	system	using	Cris2an’s	method	

Nov	13,	2017	 Sprenkle	-	CSCI325	 26	

11/13/17	

14	

Berkeley	Algorithm	
•  How	can	we	deal	with	faulty	clocks?	
•  Gusella	and	Zai	developed	algorithm	for	internal	
synchroniza2on	in	LANs	

•  One	computer	is	chosen	as	producer,	other	computers	
(who	want	to	be	synchronized)	are	the	consumers	
Ø  Producer	polls	consumers	for	local	clock	values	
Ø  Producer	es2mates	RTTs	between	consumers	
Ø  Producer	takes	a	“fault-tolerant”	average	of	all	values	

obtained	to	determine	“global”	clock	value	
•  Eliminates	readings	from	faulty	clocks	

Ø  Producer	sends	back	individual	“skews”	(+/-)	to	each	
consumer	

Nov	13,	2017	 Sprenkle	-	CSCI325	 27	

Network	Time	Protocol	(NTP)	
• Cris2an’s	method	and	the	Berkeley	algorithm	are	
intended	primarily	for	use	within	intranets	
Ø Rely	on	rela2vely	low	latency	measurements	
between	par2cipants	

• Need	a	method	for	distribu2ng	2me	informa2on	
and	external	synchroniza2on	over	the	wide-area	
(like	the	Internet)	
Ø Must	be	able	to	deal	with	varia2ons	in	latency	

Nov	13,	2017	 Sprenkle	-	CSCI325	 28	

Solution: NTP

11/13/17	

15	

NTP	
•  Developed	by	Dave	Mills	at	University	
of	Delaware		

•  Ini2ally	developed	in	early	1980s	
•  Runs	over	UDP	on	port	123	
•  Specifically	designed	to	handle	effects	
of	variable	latency	measurements	
(ojen	called	jiEer)	

•  Goals:	reliability,	scalability	
•  Synchronizes	clocks	to	UTC	

Nov	13,	2017	 Sprenkle	-	CSCI325	 29	

NTP	Clock	Strata	
•  Stratum	0:	atomic	clocks,	GPS	clocks,	

radio	clocks	w/	UTC	
•  Stratum	1:	Time	servers	(primary),	

adached	directly	to	Stratum	0	
devices	

•  Stratum	2:	Send	requests	to	one	or	
more	Stratum	1	2me	servers	

•  Stratum	3:	Send	requests	to	one	or	
more	Stratum	2	computers	

•  And	so	on…	
•  Up	to	256(!)	strata	levels	supported	

in	current	version	of	NTP	

Nov	13,	2017	 Sprenkle	-	CSCI325	 30	

Most accurate

https://en.wikipedia.org/wiki/
Network_Time_Protocol#/media/
File:Network_Time_Protocol_servers_and_clients.svg

Lowest leaf: �
users’ workstations
Reconfigurable in �

response to failures

11/13/17	

16	

Synchronizing	Servers	
•  All	messages	sent	using	UDP	
•  Each	message	bears	2mestamps	of	recent	events:	

Ø  Local	2mes	of	Send	and	Receive	of	previous	message	
Ø  Local	2mes	of	Send	of	current	message	

•  Recipient	notes	the	2me	of	receipt	Ti		
Ø  Have	Ti-3,	Ti-2,	Ti-1,	Ti	

Nov	13,	2017	 Sprenkle	-	CSCI325	 31	

Ti

Ti-1T i-2

Ti- 3

Server B

Server A

Time

m m'

Time

Accuracy	of	NTP	
•  For	each	pair	of	messages	between	two	servers,	NTP	es2mates	

an	offset	o	between	the	two	clocks	and	a	delay	di	(total	2me	for	
the	two	messages,	which	take	t	and	t’)	
Ti-2	=	Ti-3	+	t	+	o	and	Ti	=	Ti-1	+	t’	-	o	

•  This	gives	us	(by	adding	the	equa2ons)	:	
di	=	t	+	t’	=	Ti-2		-	Ti-3	+	Ti		-	Ti-1		

•  Also	(by	subtrac2ng	the	equa2ons)	
o	=	oi	+	(t’	-	t)/2	where	oi		=	(Ti-2		-	Ti-3	+	Ti-1		-	Ti)/2	

•  Using	the	fact	that	t,	t’>0	it	can	be	shown	that		
oi	-	di	/2	≤	o	≤	oi	+	di	/2	.	
Ø  Thus	oi	is	an	es2mate	of	the	offset	and	di	is	a	measure	of	the	accuracy	

Nov	13,	2017	 Sprenkle	-	CSCI325	 32	

11/13/17	

17	

NTP	Sta2s2cs	
•  In	1999	there	were	175,000	hosts	running	NTP	in	the	
Internet	

•  Among	these	there	were:	
Ø Over	300	valid	Stratum	1	servers	

•  Never	contacted	directly,	except	by	Stratum	2	
Ø Over	20,000	servers	at	Stratum	2	
Ø Over	80,000	servers	at	Stratum	3	

•  Accuracy	of	10s	of	milliseconds	over	Internet	paths	
(even	more	accurate	on	LANs)	

Nov	13,	2017	 Sprenkle	-	CSCI325	 33	

Source: http://www.ntp.org/ntpfaq/NTP-s-def.htm

LOGICAL	CLOCKS	

Nov	13,	2017	 Sprenkle	-	CSCI325	 34	

11/13/17	

18	

Logical	Time	and	Logical	Clocks	
• Instead	of	synchronizing	clocks,	event	ordering	can	be	used	
• Rules:	

1.  If	two	events	occurred	at	the	same	process	pi	(i	=	1,	2,	…	N)	then	they	
occurred	in	the	order	observed	by	pi,	that	is	→ι 	

2.  When	a	message	m	is	sent	between	two	processes,	send(m)	happened	
before	receive(m)	

3.  The	happened-before	rela2on	is	transi2ve	

Nov	13,	2017	 Sprenkle	-	CSCI325	 35	

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Happened	Before	Rela2on	
• What	do	we	know	about	events	a,	b,	c,	d,	f?	

Ø  Rule	1:	a	→	b	(at	p1),	c	→	d	(at	p2)	
Ø  Rule	2:	b	→ c	(by	m1),	d	→ f	(by	of	m2)	
Ø  Rule	3:	a	→	b	→	c	→	d	→	f	=	a	→	f		

• What	do	we	know	about	a	and	e?	
Ø No	rela2on	à	they	are	concurrent:	a	||	e	

Nov	13,	2017	 Sprenkle	-	CSCI325	 36	

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

11/13/17	

19	

Lamport’s	Logical	Clocks	
• A	logical	clock	is	a	monotonically	
increasing	sojware	counter	
Ø Need	not	relate	to	a	physical	clock	

Nov	13,	2017	 Sprenkle	-	CSCI325	 37	

Leslie Lamport

Lamport’s	Logical	Clocks	
•  Each	process	pi	has	a	logical	clock,	Li		

Ø  Can	be	used	to	apply	logical	2mestamps	to	events	using	rules:	
•  LC1:	Li		is	incremented	by	1	before	each	event	at	process	pi,	Li	=	Li	+	1	
•  LC2:		

a)  when	process	pi	sends	message	m,	it	piggybacks	on	m	the	value	t	=		Li		
b)  when	pj	receives	(m,t)	it	sets	Lj	:=	max(Lj,	t)	and	applies	LC1	before	

2mestamping	the	event	receive	(m)	

Nov	13,	2017	 Sprenkle	-	CSCI325	 38	

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

11/13/17	

20	

Lamport’s	Logical	Clocks	
•  Each	of	p1,	p2,	p3	has	its	logical	clock	ini2alized	to	zero		
•  The	clock	values	on	events	are	those	immediately	a-er	the	event	

Ø  e.g.,	1	for	a,	2	for	b.		
•  For	m1,	t	=	2	is	piggybacked	and	c	gets	L2	=	max(0,2)+1	=	3		
•  Note	that	e	→ e’	implies	L(e)	<	L(e’)	
•  Does	L(e)	<	L(e')	imply	e	→ e’	?	

Ø  No!	The	converse	is	not	true:	L(e)	<	L(e')	does	not	imply	e	→ e’	
Ø  Example:	L(e)	<	L(b)	but	b	||	e	

Nov	13,	2017	 Sprenkle	-	CSCI325	 39	

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport	Clocks	à	Vector	Clocks	
•  Limita2on	of	Lamport	clocks:	

Ø  L(e)	<	L(e’)	does	not	imply	e	happened	before	e’	
Ø  If	L(e)	<	L(e’),	we	want	to	know	for	sure	that	e	happened	

before	e’	
•  How	can	we	overcome	the	limita2on?	
•  Solu2on:	Vector	clocks	

Ø Vector	2mestamps	(rather	than	a	single	number)	are	used	to	
2mestamp	local	events	

Ø  Vector	clock	Vi[i]	is	the	number	of	events	that	pi	has	
2mestamped	

Ø  Vi[j]	(j	≠	i)	is	the	number	of	events	at	pj	that	pi	has	been	
affected	by	

•  Vector	clocks	are	used	in	many	schemes	for	replica2on	
of	data	to	ensure	consistency	

Nov	13,	2017	 Sprenkle	-	CSCI325	 40	

11/13/17	

21	

Vector	Clocks	
•  Vector	clock	Vi	at	process	pi	is	an	array	of	N	integers	
•  Rules	for	determining	vector	clocks:	

Ø  VC1:		Ini2ally	Vi[j]	=	0	for	i,	j	=	1,	2,	…N	
Ø  VC2:		Before	pi	2mestamps	an	event,	it	sets	Vi[i]	=	Vi[i]	+1	
Ø  VC3:		pi	piggybacks	t	=	Vi	on	every	message	it	sends	
Ø  VC4:		Merge:	When	pi	receives	(m,t)	it	sets	Vi[j]	:=	max(Vi[j]	,	t[j])	j	=	1,	2,	…

N	

Nov	13,	2017	 Sprenkle	-	CSCI325	 41	

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector	Clocks	
•  At	p1:	a(1,0,0),	b(2,0,0),	piggyback	(2,0,0)	on	m1	
•  At	p2:	On	receipt	of	m1	get	max	((0,0,0),	(2,0,0))	=	(2,0,0),	and	add	1	to	own	

element	in	clock	=	(2,1,0)	for	event	c	
•  At	p3:	On	receipt	of	m2	get	max	((0,0,1),	(2,2,0))	=	(2,2,1)	and	add	1	to	own	

element	in	clock	
•  Vector	2mestamp	opera2ons:	=,	<=,	max,	etc.	

Ø  Compare	elements	pairwise	
•  Note	that	e	→ e’	s2ll	implies	L(e)	<	L(e’)		
•  And	now	the	converse	is	also	true	(L(e)	<	L(e’)	implies	e	→ e’)	
•  Can	you	see	a	pair	of	parallel	events?	

Ø  c	||	e	because	neither	V(c)	<=	V(e)	nor	V(e)	<=	V(c)	

Nov	13,	2017	 Sprenkle	-	CSCI325	 42	

11/13/17	

22	

Summary:		
Time	and	Clocks	in	Distributed	Systems		
•  Accurate	2mekeeping	is	important	for	distributed	systems	
•  Algorithms	(e.g.,	Cris2an’s	and	NTP)	synchronize	clocks	in	spite	of	

their	drij	and	the	variability	of	message	delays	
•  For	ordering	an	arbitrary	pair	of	events	at	different	computers,	

clock	synchroniza2on	is	not	always	prac2cal		
•  The	happened-before	rela2on	is	a	par2al	order	on	events	that	

reflects	a	flow	of	informa2on	between	them	
•  Lamport	clocks	are	counters	that	are	updated	according	to	

happened-before	rela2onship	between	events	
•  Vector	clocks	are	an	improvement	on	Lamport	clocks	

Ø  By	comparing	vector	2mestamps,	can	tell	whether	two	events	are	ordered	
by	happened-before	or	are	concurrent	

Nov	13,	2017	 Sprenkle	-	CSCI325	 43	

