Today’s Objectives

Wrap up Distributed File Systems
Timing

Nov 13, 2017 Sprenkle - CSCI325 1

Sakai Poll Exam Replacement Day Results

Wednesday, November 15 - 2 -14%
Friday, November 17 - 12 - 86%

Last class before break: Wednesday

Exam will go out tomorrow
Can start Wednesday at midnight

Nov 13, 2017 Sprenkle - CSCI325 2

11/13/17

Inverted Index Project

Due tonight

Like old-timey

programming

» Want to make sure
your program is
really good before
running

% Ve rssow 0
Mo B Lewe s
’ ’

» Takes a long time to

get feedback http://www-@3.1ibm.com/ibm/
history/ibml1@@/us/en/icons/
punchcard/breakthroughs/

Nov 13, 2017 Sprenkle - CSCI325 3

Review

What is the motivation for a distributed file
system (DFS)?

How does a DFS make remote files look the same
as local files?

What are some policies that DFS can use when
managing file caches?

» Consider: what happens when a client updates a file?
What is NFS?

» What is its protocol built on?

Nov 13, 2017 Sprenkle - CSCI325 4

11/13/17

Review: Sun NFS

Sun Microsystem’s Network File System
» Widely adopted in industry and academia since 1985
» (we use it)

All NFS implementations support NFS protocol
» Currently on version 4

» Protocol is a set of RPCs that provide mechanisms for
clients to perform operations on remote files

» 0S-independent but originally designed for UNIX

Nov 13, 2017 Sprenkle - CSCI325 5

Network File System (NFS)

client server

syscall layer
VFS

kernel syscall layer
S RS \VA
/ v

*FS| | NFS
client
l

RPC over UDP or TCP

VFS=Virtual File System

user programs

Nov 13, 2017 Sprenkle - CSCI325 6

11/13/17

VFS: Vnhodes

Every file or directory in active use is represented
by a virtual node or vnode object in memory

» Each file system maintains a cache of its vnodes
» Each vnode has a standard file attribute struct

» Each standard struct points at file-system-specific file
attribute struct

syscall layer ‘

/

& » Standard Struct

Q O (;‘ FS -specific Struct

Nov 13, 2017 Sprenkle - CSCI325 7

X

Stateless NFS

NFS server maintains no in-memory hard state
» Only hard state is stable file system image on disk
» No record of clients or open files

» No implicit arguments to requests (no server-
maintained file offsets)

» No write-back caching on server
» No record of recently processed requests

Why?

Nov 13, 2017 Sprenkle - CSCI325 8

11/13/17

Stateless NFS

NFS server maintains no in-memory hard state
Only hard state is stable file system image on disk
No record of clients or open files

No implicit arguments to requests (no server-
maintained file offsets)

No write-back caching on server
No record of recently processed requests

Why? Simple recovery after server failure!

Nov 13, 2017 Sprenkle - CSCI325 9

Recovery in NFS

If server fails and restarts, no need to rebuild in-
state memory state on server

Client reestablishes contact
Client retransmits pending requests
Classical NFS used UDP

Server failure is transparent to client since there is
no “connection”

Sun RPC masks network errors by retransmitting
requests after an adaptive timeout

Dropped packets are indistinguishable from crashed
server to client

Nov 13, 2017 Sprenkle - CSCI325 10

11/13/17

NFS Server Caching

Cache read results, writes, directory operations
Write-through cache vs. write-back cache?
Write through: Each update written to disk immediately

When write operation returns, client is guaranteed stable
update

Pros:
Stateless (easy to implement), no data lost on crash
Cons:

Slow: client must wait for disk write

Nov 13, 2017 Sprenkle - CSCI325

11

Drawbacks

Stateless nature has obvious advantages but also

some drawbacks
Recovery by retransmission constrains server
interface
“Execute mostly once” semantics = send and pray

Executions usually only happen once, but not
guaranteed

Update operations are disk-limited (write-through
cache)

Server cannot help in client cache consistency

Nov 13, 2017 Sprenkle - CSCI325

12

11/13/17

NFS Client Caching

Clients cache read, writes, and directory ops
» What if multiple people updating the same file at the
same time? Consistency problems!
NFS approach:
» Server maintains last modification time/per file
» Client remembers time it initially retrieved data

» On file access, client checks timestamp against server
(every 3-30 seconds)

Unnecessary timestamp checking
How long to set the timeout? What is the tradeoff?

Nov 13, 2017 Sprenkle - CSCI325 13

Parker

CAN’'T LOSE =

TIME AND GLOBAL STATE

Nov 13, 2017 Sprenkle - CSCI325 14

11/13/17

Time
Time is an important practical issue in distributed

systems

Example: often require computers to timestamp
electronic commerce transactions

Why is that problematic?

Nov 13, 2017 Sprenkle - CSCI325 15

Time

Time in an important practical issue in distributed
systems

Example: often require computers to timestamp electronic
commerce transactions

But time can be problematic
Physical clocks in computers are not all synchronized

There is no global clock in distributed systems

Need a way to order events and approximate time
synchronization in distributed systems

Nov 13, 2017 Sprenkle - CSCI325 16

11/13/17

Process States

How can we order and timestamp the events
that occur across all distributed processes?

Assume a distributed system consists of N
processes
Each process executes on a single processor
Memory is not shared

Each process p has state s
Includes values of all variables and objects in p

Processes can only communicate via sockets

Nov 13, 2017 Sprenkle - CSCI325 17

Events

An event is an occurrence of a single action that a
process carries out as it executes
Either a communication action or state-changing action

Happens-before relationship: —

Order events within a single process so that e—e’ iff

e occurs before e’
Define the history of process p; to be the series of
events within it, ordered by relation —

history(p,) = h, =<e? e}, e?, ..>

Nov 13, 2017 Sprenkle - CSCI325 18

11/13/17

Time Design Questions

How accurate does time need to be?
How is time used in a distributed system?

What does “A happened before B” mean in a
distributed system?

Nov 13, 2017 Sprenkle - CSCI325 19

Clocks

Ordering events in a process is not the same as
assigning a timestamp to them

Timestamps require date and time of day
Computers have hardware clocks

OS reads hardware clock and adds some offset to
produce software clock

Thus we can timestamp events using software clocks
only if the clock resolution is smaller than interval
between events

Works for one process but will it work for N distributed
processes?

Nov 13, 2017 Sprenkle - CSCI325 20

11/13/17

10

Problems with Clocks in Distributed Systems

Clock skew
» Instantaneous difference between readings of any 2 clocks

SRR

Network

Clock drift

> Problem that occurs when two or more clocks count time at
different rates

Research Question: Can we synchronize physical clocks across
computers to provide global event ordering across processes?

Nov 13, 2017 Sprenkle - CSCI325 21

Synchronizing Physical Clocks

External synchronization
» Synchronize physical clocks with some external source of time
» UTC = Coordinated Universal Time

Internal synchronization

» Synchronize using the time between events that occur on
different computers (“logical clocks”)

» For clocks C;and C, if we know C; - C;< D, then we know the
clocks agree within the bound D

Internal synchronization does not imply external
synchronization!

» But external synchronization does imply internal
synchronization

Nov 13, 2017 Sprenkle - CSCI325 22

11/13/17

11

Synchronous Systems

Simplest possible synchronization case:
internal synchronization in synchronous systems
Sync systems usually use blocking send and recv calls
In a synchronous system, we know:
Max drift rate of clocks
Max transmission delay
Time to execute each step of the process
Synchronization
One process sends time t to other process in message m
Receiving process sets clock to be t + transmission_time of m

Problems?

Nov 13, 2017 Sprenkle - CSCI325 23

Synchronous Systems

Transmission time is subject to variation!

But we know the min and max transmission time
Uncertainty in transmission time = max - min

Set clock halfway between: t + (max-min)/2
Skew is at most (max-min)/2

In general, for N clocks, optimum bound on clock skew
is (max-min)(1-1/N)

But, most systems are asynchronous...

Nov 13, 2017 Sprenkle - CSCI325 24

11/13/17

12

Cristian’s Method

Most distributed systems are asynchronous = unbounded

transmission delay

Round trip times (RTTs) are often reasonably short (in LANs)
Cristian suggested a probabilistic algorithm using a time server

for external synchronization in asynchronous systems
Process requests time in m, and gets response in m,
tis time according to S (the time server)

T,ounq IS time between sending m, and receiving m,

Process sets clocktobe t + T,,,,., /2

me
O——O
i
mt
p Time server,S

Nov 13, 2017 Sprenkle - CSCI325 Pr'oblemS?

25

Problems

Time server is single point of failure!
But can replicate...
...as long as the replicas stay synchronized

Faulty time server could wreak havoc on
distributed system using Cristian’s method

Nov 13, 2017 Sprenkle - CSCI325

26

11/13/17

13

Berkeley Algorithm

How can we deal with faulty clocks?

Gusella and Zatti developed algorithm for internal
synchronization in LANs
One computer is chosen as producer, other computers
(who want to be synchronized) are the consumers
Producer polls consumers for local clock values
Producer estimates RTTs between consumers

Producer takes a “fault-tolerant” average of all values
obtained to determine “global” clock value

Eliminates readings from faulty clocks

Producer sends back individual “skews” (+/-) to each
consumer

Nov 13, 2017 Sprenkle - CSCI325 27

Network Time Protocol (NTP)

Cristian’s method and the Berkeley algorithm are
intended primarily for use within intranets
Rely on relatively low latency measurements
between participants
Need a method for distributing time information
and external synchronization over the wide-area
(like the Internet)
Must be able to deal with variations in latency

Nov 13, 2017 Sprenkle - CSCI325 28

11/13/17

14

NTP

Developed by Dave Mills at University
of Delaware

Initially developed in early 1980s
Runs over UDP on port 123

Specifically designed to handle effects
of variable latency measurements
(often called jitter)

Goals: reliability, scalability
Synchronizes clocks to UTC

Nov 13, 2017 Sprenkle - CSCI325

29

NTP Clock Strata

Most accurate

Stratum 0: atomic clocks, GPS clocks 0

’) S
radio clocks w/ UTC @ O @
Stratum 1: Time servers (primary), 1 l £ l

attached directly to Stratum O

deice: S VaAYAN

Stratum 2: Send requests to one or

more Stratum 1 time servers . /\ /J l\ /\ .
Stratum 3: Send requests toone or [3 ¥ [] .

Ly

more Stratum 2 computers

And so on... Lowest leaf:
Up to 256(!) strata levels supported users’ workstations
in current version of NTP Reconfigurable in

https://en.wikipedia.org/wiki/ ;
Network_Time_Protocol#/media/ response to failures
File:Network_Time_Protocol_servers_and_clients.svg

~g-8-8--8-6

30

11/13/17

15

Synchronizing Servers

All messages sent using UDP
Each message bears timestamps of recent events:

Local times of Send and Receive of previous message
Local times of Send of current message

Recipient notes the time of receipt T;
Have T3, T, Ty T,

Server B
\ / \ / ¥ Time
™ Time
Server A Ti-3 Ti
Nov 13, 2017 Sprenkle - CSCI325 31

Accuracy of NTP

For each pair of messages between two servers, NTP estimates
an offset o between the two clocks and a delay d, (total time for
the two messages, which take t and t’)
T,=T;+t+oand T,=T,_,+t -0
This gives us (by adding the equations) :
di=t+t' =T, -T3+T, -T,
Also (by subtracting the equations)
o=o0,+(t'-t)/2whereo;, =(T, -T;+ T, -T)/2
Using the fact that ¢t, t'>0 it can be shown that
0,-d;/2<0<0,+d,/2.

Thus o; is an estimate of the offset and d; is a measure of the accuracy

Nov 13, 2017 Sprenkle - CSCI325 32

11/13/17

16

NTP Statistics

In 1999 there were 175,000 hosts running NTP in the
Internet

Among these there were:
Over 300 valid Stratum 1 servers
Never contacted directly, except by Stratum 2
Over 20,000 servers at Stratum 2
Over 80,000 servers at Stratum 3

Accuracy of 10s of milliseconds over Internet paths
(even more accurate on LANs)

Source: http://www.ntp.org/ntpfaq/NTP-s-def.htm

Nov 13, 2017 Sprenkle - CSCI325

33

LOGICAL CLOCKS

Nov 13, 2017 Sprenkle - CSCI325

34

11/13/17

17

Logical Time and Logical Clocks

Instead of synchronizing clocks, event ordering can be used

Rules:
1. If two events occurred at the same process p; (i =1, 2, ... N) then they
occurred in the order observed by p, that is —,

2. When a message m is sent between two processes, send(m) happened
before receive(m)
3. The happened-before relation is transitive

P1 ® .
a b my
P2 Py Physical
c d m time
2
P3 g 4
e f
Nov 13, 2017 Sprenkle - CSCI325 35
Happened Before Relation
What do we know about events a, b, ¢, d, f?
Rulel:a — b (atp,), c —=d (at p,)
Rule 2: b —c (by m,), d — f (by of m,)
Rule3:a—-b—-c—-d—-f=a—f
What do we know about a and e?
No relation = they are concurrent: a || e
P4 ® .
a b my
P2 Py Physical
c d time
my
P3 g

Nov 13, 2017 € Sprenkle - CSCI325 36

11/13/17

18

Lamport’s Logical Clocks

A logical clock is a monotonically
increasing software counter

» Need not relate to a physical clock

/”/; ”Iﬂcfh e

Leslie Lamport

BTEX

Nov 13, 2017 Sprenkle - CSCI325 37

Lamport’s Logical Clocks

Each process p; has a logical clock, L;

» Can be used to apply logical timestamps to events using rules:
LC1: L; isincremented by 1 before each event at process p, L;=L;+ 1
LC2:
a) when process p; sends message m, it piggybacks on m the value t = L,

b) when p; receives (m,t) it sets L; := max(L, t) and applies LC1 before
timestamping the event receive (m)

P1 L 4 @,
a b my
P2 Py Physical
time
c d m,

P3 . .

e f

Nov 13, 2017 Sprenkle - CSCI325 38

11/13/17

19

Lamport’s Logical Clocks

Each of p,, p,, p; has its logical clock initialized to zero

The clock values on events are those immediately after the event
e.g., 1fora, 2 forb.

For m,, t = 2 is piggybacked and c gets L, = max(0,2)+1 =3

Note that e — e’ implies L(e) < L(e’)

Does L(e) < L(e') implye —= ¢’ ?
No! The converse is not true: L(e) < L(e') does not imply e — ¢’
Example: L(e) < L(b) butb || e

1

2

P4 ° -
a b my
D :_3 4 Physical
2 c d time
ma
1 5

P3 L 4 L 4
Nov 13, 2017 € Sprenkle - CSCI325 f 39

Lamport Clocks = Vector Clocks

Limitation of Lamport clocks:
L(e) < L(e’) does not imply e happened before €’
If L(e) < L(e’), we want to know for sure that e happened
before €’

How can we overcome the limitation?

Solution: Vector clocks

Vector timestamps (rather than a single number) are used to
timestamp local events

Vector clock V/[i] is the number of events that p, has
timestamped

Vi[j] (j # i) is the number of events at p; that p; has been
affected by

Vector clocks are used in many schemes for replication
of data to ensure consistency

Nov 13, 2017 Sprenkle - CSCI325 40

11/13/17

20

Vector Clocks

Vector clock V; at process p; is an array of N integers
Rules for determining vector clocks:
VC1: Initially Vi[jl=0fori,j=1,2,..N
VC2: Before p, timestamps an event, it sets V[i] = V/[i] +1
VC3: p, piggybacks t = V; on every message it sends

VC4: Merge: When p, receives (m,t) it sets V/[j] := max(V[j], t[]1)j=1, 2, ...

N
P4 L .
a b m;
P2 P Physical
time
c d m,

P3 . .

Nov 13, 2017 e Sprenkle - CSCI325 f 41

Vector Clocks

At p,:a(1,0,0), b(2,0,0), piggyback (2,0,0) on m,
At p,: On receipt of m; get max ((0,0,0), (2,0,0)) = (2,0,0), and add 1 to own
element in clock = (2,1,0) for event c
At p5: On receipt of m, get max ((0,0,1), (2,2,0)) = (2,2,1) and add 1 to own
element in clock
Vector timestamp operations: =, <=, max, etc.
Compare elements pairwise
Note that e — €’ still implies L(e) < L(e’)
And now the converse is also true (L(e) < L(e’) implies e — ¢€’)
Can you see a pair of parallel events?
¢ || e because neither V(c) <= V(e) nor V(e) <= V(c)
(’I,(-),O) (2,9,0)

" ° t\
('2‘1 ,0) (2,2,0) Physical
P2 o d time
m2
(0,0,1) (2.2.2)
e

P3 hd
Nov 13, 2017 Sprenkle - CSCI325 f 42

11/13/17

21

Summary:
Time and Clocks in Distributed Systems

Accurate timekeeping is important for distributed systems
Algorithms (e.g., Cristian’s and NTP) synchronize clocks in spite of
their drift and the variability of message delays

For ordering an arbitrary pair of events at different computers,
clock synchronization is not always practical

The happened-before relation is a partial order on events that
reflects a flow of information between them

Lamport clocks are counters that are updated according to
happened-before relationship between events

Vector clocks are an improvement on Lamport clocks

By comparing vector timestamps, can tell whether two events are ordered
by happened-before or are concurrent

Nov 13, 2017 Sprenkle - CSCI325 43

11/13/17

22

