
10/25/17	

1	

Today’s	Objec4ves	
• MapReduce	
• Hadoop	
• Amazon	Web	Services	

Oct	25,	2017	 1	Sprenkle	-	CSCI325	

Oct	25,	2017	 Sprenkle	-	CSCI325	 2	

10/25/17	

2	

Oct	25,	2017	 Sprenkle	-	CSCI325	 3	

http://www.datacenterknowledge.com/archives/2016/06/27/
heres-how-much-energy-all-us-data-centers-consume

Oct	25,	2017	 Sprenkle	-	CSCI325	 4	

http://www.datacenterknowledge.com/archives/2016/06/27/
heres-how-much-energy-all-us-data-centers-consume

 SP: service providers

10/25/17	

3	

Oct	25,	2017	 Sprenkle	-	CSCI325	 5	

SaaS	and	PaaS	
•  SaaS:	So&ware	as	a	
Service	
Ø  an	applica4on	is	hosted	as	

a	service	provided	to	
customers	across	the	
Internet	

Ø  Saas	alleviates	the	burden	
of	soPware	maintenance/
support	

Ø  but	users	relinquish	
control	over	soPware	
versions	and	
requirements	

•  PaaS:	Pla0orm	as	a	Service	
Ø  provides	a	compu4ng	

plaTorm	and	a	solu4on	
stack	as	a	service		

Ø  Consumer	creates	the	
soPware	using	tools	and/or	
libraries	from	the	provider		

Ø  Consumer	controls	soPware	
deployment	and	
configura4on	seVngs.		

Ø  Provider	provides	the	
networks,	servers,	storage	
and	other	services	

6 Oct	25,	2017	 Sprenkle	-	CSCI325	

10/25/17	

4	

IaaS:	Infrastructure	as	a	Service	
•  IaaS	providers	offer	virtual	machines,	virtual-
machine	image	libraries,	raw	(block)	and	file-
based	storage,	firewalls,	load	balancers,	IP	
addresses,	virtual	local	area	networks	(VLANs),	
and	soPware	bundles.	

• Pools	of	hypervisors	can	scale	services	up	and	
down	according	to	customers'	varying	
requirements		

• All	infrastructure	is	provided	on-demand	

Oct	25,	2017	 Sprenkle	-	CSCI325	 7	

MAPREDUCE	

Oct	25,	2017	 Sprenkle	-	CSCI325	 8	

10/25/17	

5	

MapReduce	
• What	were	your	main	takeaways?	

Ø Why?	
Ø What?	
Ø Who?	
Ø How?	

Oct	25,	2017	 Sprenkle	-	CSCI325	 9	

Discussion	
• What	are	the	mo4va4on,	challenges,	and	goals	
for	MapReduce?	

Oct	25,	2017	 Sprenkle	-	CSCI325	 10	

10/25/17	

6	

Mo4va4on:	Large-Scale	Data	Processing	
• Want	to	process	lots	of	data	(>	1	TB)	
• Want	to	parallelize	across	hundreds/thousands	
of	CPUs	
Ø Probably	more	in	reality…	

• And	we	want	to	make	this	easy	
Ø Programming	for	distributed	systems	is	complex	

	
	

Oct	25,	2017	 Sprenkle	-	CSCI325	 11	

Discussion	
• MapReduce:	what	applica4ons	have	they	used	it	
for?	

Oct	25,	2017	 Sprenkle	-	CSCI325	 12	

10/25/17	

7	

Sample	Applica4ons	
• Distributed	grep	
• Count	of	URL	access	frequency	
• Reverse	Web-link	graph	
•  Inverted	index		
• Distributed	sort	

Oct	25,	2017	 Sprenkle	-	CSCI325	 13	

Discussion	
• What	features	does	MapReduce	provide?	

Oct	25,	2017	 Sprenkle	-	CSCI325	 14	

10/25/17	

8	

MapReduce	
• Automa4c	paralleliza4on	&	distribu4on	of	large-
scale	computa4ons	

• Fault-tolerant	
Ø handles	machine	failures	gracefully	

• Provides	status	and	monitoring	tools	
• Clean	abstrac4on	for	programmers	

Oct	25,	2017	 Sprenkle	-	CSCI325	 15	

Programming	Model	
• Borrows	from	func4onal	programming	
•  Input	&	Output:	each	a	set	of	key/value	pairs		
• Users	implement	interface	of	two	func4ons:	
	

 map(in_key, in_value) ->
(out_key, intermediate_value) list

reduce(out_key, intermediate_value list) ->
out_value list

Oct	25,	2017	 Sprenkle	-	CSCI325	 16	

Who has used functional languages?

10/25/17	

9	

Programming	Model:	map	

• Records	from	the	data	source	(lines	out	of	files,	
rows	of	a	database,	etc)	are	fed	into	the	map	
func4on	as	key*value	pairs:	e.g.,	(filename,	line)	

• map() produces	one	or	more	intermediate	
values	along	with	an	output	key	from	the	input	

Oct	25,	2017	 Sprenkle	-	CSCI325	 17	

map(in_key, in_value) ->
(out_key, intermediate_value) list

Programming	Model:	reduce

• APer	the	map	phase,	all	intermediate	values	for	
a	par4cular	output	key	are	combined	together	
into	a	list	

• reduce() combines	those	intermediate	
values	into	one	or	more	final	values	for	that	
same	output	key		
Ø in	prac4ce,	usually	only	one	final	value	per	key	

	
Oct	25,	2017	 Sprenkle	-	CSCI325	 18	

reduce(out_key, intermediate_value list) ->
out_value list

10/25/17	

10	

Data store 1 Data store n
map

(key 1,
values ...)

(key 2,
values ...)

(key 3,
values ...)

map

(key 1,
values...)

(key 2,
values ...)

(key 3,
values ...)

Input key *value
pairs

Input key*value
pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,
intermediate

values

key 2,
intermediate

values

key 3,
intermediate

values

final key 1
values

final key 2
values

final key 3
values

...

Oct	25,	2017	 Sprenkle	-	CSCI325	 19	

Synchronization
Mechanism

Parallelism	
• map() func4ons	run	in	parallel,	crea4ng	
different	intermediate	values	from	different	
input	data	sets	

• reduce() func4ons	also	run	in	parallel,	each	
working	on	a	different	output	key	

• All	values	are	processed	independently	

• Bomleneck:	reduce	phase	can’t	start	un4l	map	
phase	is	completely	finished.	

Oct	25,	2017	 Sprenkle	-	CSCI325	 20	

10/25/17	

11	

Example:	Count	word	occurrences	

map(String input_key, String input_value):
 // input_key: document name
 // input_value: document contents
 for each word w in input_value:
 EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):
// output_key: a word
// output_values: a list of counts
int result = 0;
for each v in intermediate_values:
 result += ParseInt(v);
Emit(AsString(result));

Oct	25,	2017	 Sprenkle	-	CSCI325	 21	

Example	vs.	Actual	Source	Code	

• Example	is	wrimen	in	pseudo-code	
• Actual	implementa4on	is	in	C++,	using	a	
MapReduce	library	

• Bindings	for	Python	and	Java	exist	via	interfaces	
• True	code	is	somewhat	more	involved	(defines	
how	the	input	key/values	are	divided	up	and	
accessed,	etc.)	

Oct	25,	2017	 Sprenkle	-	CSCI325	 22	

10/25/17	

12	

Discussion	
• What	are	some	op4miza4ons	that	MapReduce	
u4lizes?	

Oct	25,	2017	 Sprenkle	-	CSCI325	 23	

Locality	
• Master	program	divides	tasks	based	on	loca4on	
of	data:	tries	to	have	map()	tasks	on	same	
machine	as	physical	file	data	or	at	least	same	
rack	

• map() task	inputs	are	divided	into	64	MB	
blocks:	same	size	as	Google	File	System	chunks	

	

Oct	25,	2017	 Sprenkle	-	CSCI325	 24	

10/25/17	

13	

Fault	Tolerance	
• Master	detects	worker	failures	

Ø Re-executes	completed	&	in-progress	map()	tasks	
Ø Re-executes	in-progress	reduce()	tasks	

• Master	no4ces	par4cular	input	key/values	cause	
crashes	in	map()	and	skips	those	values	on	re-
execu4on	
Ø Effect:	Can	work	around	bugs	in	third-party	libraries!	

Oct	25,	2017	 Sprenkle	-	CSCI325	 25	

Op4miza4ons	
• No	reduce	can	start	un4l	map	is	complete:	

Ø A	single	slow	disk	controller	can	rate-limit	the	whole	
process	

• Master	redundantly	executes	“slow-moving”	
map	tasks;	uses	results	of	first	copy	to	finish	
Ø This	is	the	“stragglers”	problem	

Why is it safe to redundantly execute map tasks? �
Wouldn’t this mess up the total computation?

Oct	25,	2017	 Sprenkle	-	CSCI325	 26	

10/25/17	

14	

Op4miza4ons	
• “Combiner”	func4ons	can	run	on	same	machine	
as	a	mapper	

• Causes	a	mini-reduce	phase	to	occur	before	the	
real	reduce	phase,	to	save	bandwidth	

Oct	25,	2017	 Sprenkle	-	CSCI325	 27	

MapReduce	Conclusions	
• MapReduce	has	proven	to	be	a	useful	abstrac4on		
•  Greatly	simplifies	large-scale	computa4ons	at	Google		
•  Func4onal	programming	paradigm	can	be	applied	to	
large-scale	applica4ons	

•  Fun	to	use:	focus	on	problem,	let	library	deal	w/	messy	
details		

Oct	25,	2017	 Sprenkle	-	CSCI325	 28	

10/25/17	

15	

Discussion	
• What	do	you	think	about	MapReduce?	
• Any	problems	or	limita4ons?	
• Lessons	learned?	
• Your	ques4ons?	

Oct	25,	2017	 Sprenkle	-	CSCI325	 29	

Does	Google	Use	MapReduce?	
• Google	Dumps	MapReduce	in	Favor	of	New	
Hyper-Scale	Analy4cs	System	
Ø Cloud	Dataflow	
Ø hmp://www.datacenterknowledge.com/archives/
2014/06/25/google-dumps-mapreduce-favor-new-
hyper-scale-analy4cs-system	

Oct	25,	2017	 Sprenkle	-	CSCI325	 30	

10/25/17	

16	

Oct	25,	2017	 Sprenkle	-	CSCI325	 31	

• Framework	wrimen	in	Java	for	running	
applica4ons	on	large	clusters	of	commodity	
hardware	

•  Incorporates	features	similar	to	those	of	Google	
File	System	and	of	MapReduce	

• Used	to	break	complicated	problems	apart,	
spreading	them	across	many	computers	

• Open-source	implementa4on	of	MapReduce,	
and	its	own	filesystem	HDFS	(Hadoop	distributed	
file	system)	

Oct	25,	2017	 Sprenkle	-	CSCI325	 32	

10/25/17	

17	

•  Contains Libraries and other modules Hadoop
Common

•  Hadoop Distributed File System HDFS

•  (Yet Another Resource Negotiator)
•  Job scheduling and resource manager Hadoop YARN

•  A programming model for large scale
data processing

Hadoop
MapReduce

The	Hadoop	Ecosystem	

Evolu4on	of	Comics	

Oct	25,	2017	 Sprenkle	-	CSCI325	 34	

à I’m MapReducing!

à MapReducing!

10/25/17	

18	

WordCount	Mapper	in	Java	

Oct	25,	2017	 Sprenkle	-	CSCI325	 35	

public static class TokenizerMapper  
extends Mapper<Object, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value, Context context)  
 throws IOException, InterruptedException {

 StringTokenizer itr = new
StringTokenizer(value.toString());
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);

 }
 }
}

WordCount	Reducer	in	Java	

Oct	25,	2017	 Sprenkle	-	CSCI325	 36	

public static class IntSumReducer
 extends Reducer<Text, IntWritable, Text, IntWritable> {
 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable>
values, Context context)

throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {

 sum += val.get();
}
result.set(sum);
context.write(key, result);

 }
}

10/25/17	

19	

AMAZON	WEB	SERVICES	(AWS)	

Oct	25,	2017	 Sprenkle	-	CSCI325	 37	

What	is	Amazon	Web	Services?	
• A	collec4on	of	remote	compu4ng	services	that	
together	make	up	a	cloud	compu4ng	plaTorm	
Ø offered	over	the	Internet	by	Amazon.com	

• Grew	out	of	Amazon’s	need	to	rapidly	provision	
and	configure	machines	of	standard	
configura4ons	for	its	own	business.	

38	

http://aws.amazon.com

Oct	25,	2017	 Sprenkle	-	CSCI325	

10/25/17	

20	

Amazon	Web	Services	Architecture	

•  AWS	is	located	in	geographical	Regions	
Ø  Region:	Geographic	loca4on,	price,	laws,	network	locality.	
Ø  wholly	contained	within	a	single	country	and	all	of	its	data	and	services	stay	

within	the	designated	Region.	
•  Each	region	has	mul4ple	Availability	Zones	

Ø  dis4nct	data	centers	providing	AWS	services	
Ø  isolated	from	each	other	to	prevent	outages	from	spreading	between	Zones	

39	Oct	25,	2017	 Sprenkle	-	CSCI325	

Terminology	
•  Instance:	One	running	virtual	machine.	
•  Instance	Type:	hardware	configura4on	-	cores,	
memory,	disk.	

•  Instance	Store	Volume:	Temporary	disk	
associated	with	instance.	

•  Image	(AMI):	Stored	bits	which	can	be	turned	
into	instances.	

• Key	Pair:	Creden4als	used	to	access	VM	from	
command	line.	

Oct	25,	2017	 Sprenkle	-	CSCI325	 40	

10/25/17	

21	

Project	3	
• Use	MapReduce	and	Amazon	clusters	to	create	
an	inverted	index	
Ø What	is	an	inverted	index?	

• Write	mapper	and	reducer		
• Check	out	resources,	run	through	the	tutorials	

Ø Don’t	get	overwhelmed!	
Ø Important	part	of	CS	is	learning	tools,	systems	on	
your	own	

Oct	25,	2017	 Sprenkle	-	CSCI325	 41	

