
1	

Objec(ves	
• Web	Server	
• Socket	programming	in	Java	
• Project	1	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 1	

Open up a terminal

Administra(on	
• Background	on	Web	Server	project	

Ø Abstrac(ng	away	networking	
• Back	to	regularly	scheduled	program	on	
Wednesday	
Ø Wed:	Distributed	Systems	challenges,	networking	
Ø Fri:	threads/synchroniza(on,	End	to	end	argument	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 2	

2	

Perusall	
• Access	through	Sakai	

Ø No	need	for	new	account	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 3	

What	is	a	Web	Server?	
• What	does	it	do?	
• What	are	the	par(es	involved?	
• Know	any	web	server	soUware/applica(ons?	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 4	

3	

What	is	a	Web	Server?	
• What	does	it	do?	

Ø Serves	requested	files	to	user	
• What	are	the	par(es	involved?	

Ø Browser	(client),	HTTP	(communica(on),	Web	server,	
HTML	documents	

• Know	any	web	server	soUware/applica(ons?	
Ø Apache,	MicrosoU	IIS	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 5	

Clients	and	Servers	
• Server	tasks 		

Ø Listen,	accept,	receive,	send,	loop	

• Client	tasks	
Ø Connect,	request,	receive,	close	
	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 6	

4	

How	Does	The	Browser	Get	a	Page?	
•  In	Web	browser,	enter	a	URL	

Ø URL:	Uniform	Resource	Locator	

Ø May	not	have	explicitly	typed	in	“http”	
• Default	protocol	
• Other	protocols:	hfps,	Up	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 7	

Protocol	
used	

Host	

Favicon	

How	Does	The	Browser	Get	a	Page?	
• Look	up	Host’s	IP	Address	using	DNS	

Ø Need	to	be	able	to	“find”	host	on	the	Internet	
Ø Rou(ng	through	Internet	is	by	IP	address	

• Domain	Name	System	(DNS)	
Ø Set	of	servers	that	map	domain	name	to	IP	
Address(es)	and	vice	versa	

• Unix	commands	host	and	nslookup	can	
lookup	this	informa(on	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 8	

www.espn.com 54.149.104.165

5	

How	Does	The	Browser	Get	a	Page?	
• Browser	now	makes	the	request	using	HTTP	

Ø HTTP:	HyperText	Transfer	Protocol	
• Common	Types	of	HTTP	Requests:	

Ø GET:	download	a	page	
Ø POST:	download	a	page	
Ø HEAD:	just	get	the	“header”	for	a	page	

• For	our	example,	browser	makes	request	GET /

Sept	11,	2017	 Sprenkle	-	CSCI	325	 9	www.cnn.com	 Web	Browser	

HTTP	GET	request	

How	Does	the	Web	Server	Serve	a	Web	
Page?	

•  Receives	request	for	a	resource	on	TCP	port	80	
•  Looks	for	the	resource	in	the	Web	Document	directory	

Ø Not	all	files	on	a	Web	server	are	meant	for	others	to	see	
Ø  Specific	directory	holds	these	files	

•  If	the	file	is	found,	server	sends	an	HTTP	200	response	
with	the	requested	document	
Ø Otherwise,	sends	appropriate	error	response	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 10	

HTTP	GET	request	

HTTP	Response	

6	

How	Does	Browser	Get	a	Page?	
• Receives	response	from	server	
• Renders	file	in	appropriate	format	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 11	

HTTP	Status	Codes	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 12	

Code	 Meaning	

200	 OK:	Request	succeeded	

3xx	 Redirec(on	(temporary	or	permanent)	

403	 Error:	No	permission	

404	 Error:	File	not	found	

500	 Internal	server	error	

7	

Uh	oh!	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 13	

More	on	URLs	
• Specifies	the	loca(on	of	a	resource	
• Format:	<protocol>://<host>/<path>	

Ø Examples:	
http://www.cs.wlu.edu/~sprenkle/cs325/

http://www.cs.wlu.edu/~sprenkle/cs325/
schedule.php

Sept	11,	2017	 Sprenkle	-	CSCI	325	 14	

8	

	
	
	
	
	

Web	Server	
	
	

Web	Server	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 15	

File	System	

/home/www/users/sprenkle  
 /cs325/index.html

•  Implement	your	own	web	server	
•  Teams	of	2-3	

• Server	tasks: 		
Listen,	accept,	send,	receive,	loop	

Request:	GET /~sprenkle/cs325

HTTP	Request	
(URL)	

HTTP	Response	
(Document	or	error)	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 16	

Network	Programming	and	Java	
• Java	abstracts	details	of	underlying	network	and	
how	OS	interacts	with	it	
Ø Hidden	and	encapsulated	in	the	java.net	
package	

Ø Makes	network	programming	easier	

9	

Network	Addresses	
• A	computer	or	host	on	a	network	has	an	address	

Ø Uniquely	iden(fies	computer	on	the	network	
• Most	common	address	system	in	use	is	the	
Internet	Protocol	(IPv4)	addressing	system	
Ø 32-bit	address	
Ø Typically	wrifen	as	“dofed-quad”	

•  four	numbers,	0	through	254,	separated	by	periods,	
e.g.,	137.113.118.200	

Ø Final	exhaus(on	occurred	on	February	3,	2011	
Ø June	8,	2011	World	IPv6	Day,	a	global	24-hour	test	of	
IPv6	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 17	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 18	

Ports	
•  Each	host	on	the	network	has	a	set	of	ports	

Ø Ports	are	like	mailboxes:		
•  Address	specifies	the	host	
•  Port	specifies	applica(on	on	host	

Ø Ports	range	from	1	to	65535	
•  Allow	mul(ple	applica(ons	to	use	a	network	interface/
address	to	communicate	over	network	

•  Examples:	
Ø A	web	server	communicates	on	network	using	port	80	
Ø An	ssh	server	on	the	same	host	will	have	the	same	address	
but	use	port	22	

10	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 19	

22	

3477	

80	

23	

SSH	server	

HTTP	server	

Telnet	server	

HTTP	client	

137.113.118.203	

Network	

“Mailboxes”

A	Machine’s	Ports	

Well-Known	Ports	
• Port	numbers	<	1024	are	well-known	ports	

Ø Assigned	to	applica&on	servers	
Ø Port	80	always	has	an	HTTP	server		
Ø Port	22	always	has	an	SSH	server		

• Client	listens	on	another	port	(above	1024)	to	
receive	responses	from	a	server	

• No	technical	reason	servers	must	conform	to	these	
standards	
Ø Conven(on	so	that	clients	know	where	to	find	web	
server,	FTP	server,	…	

Ø Can	have	an	HTTP	server	at	a	port	>	1024	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 20	

11	

Sockets	
• A	socket	is	an	abstrac(on	of	an	endpoint	of	a	
two-way	communica(ons	link	

• An	applica(on	creates	a	socket	that	is	bound	to	a	
remote	address	and	remote	port	
Ø Port	on	the	host	(client)	could	be	random		

• A	connec&on	is	created	between	the	client	using	
this	port	and	the	specified	remote	address	at	the	
remote	port	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 21	

Client	 Server	
port	 port	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 22	

Services	provided	by	networks	
• Connec(on-oriented	
• Connec(on-less	

12	

Connec(on-Oriented	Service	
• A	connec(on-oriented	service	is	like	the	
telephone	system	
Ø Acts	like	a	pipe	
Ø Sender	pushes	bits	into	pipe	and	then	come	out	of	
the	receiver	in	same	condi(on	as	they	were	pushed	
in	

Ø Pipe	is	connected	to	a	port	on	the	sender	and	a	port	
on	the	receiver	

• Implemented	in	Java	using	stream	sockets	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 23	

Server	 Client	

Stream	Sockets	

•  Creates	a	pipe	that	connects	endpoints	and	provides	a	
reliable	byte	stream	

•  Communicates	using	TCP	
Ø Hides	details	of	TCP	from	programmer	
Ø  TCP:	Most	popular	protocol	that	implements	a	stream,	or	

connec(on-oriented,	service		
Ø  Reliable	service:	when	data	is	sent	from	one	end	to	the	other,	

arrives	in	order,	in	the	same	state,	and	is	not	lost	or	
duplicated	in	the	network	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 24	

Client	 Server	Network	

Socket	

13	

Connec(onless	Service	
• A	connec(onless	service	is	like	the	postal	system	

Ø One	side	sends	messages	to	the	other	side	
Ø Each	message	is	independent	
Ø Can	lose	messages	in	the	network,	duplicate	
messages,	corrupt	data	during	transport	
• An	unreliable	service	

Ø One	side	creates	a	message	and	sends	it	to	the	other	
side	

• Implemented	in	Java	using	datagram	sockets	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 25	

Java’s DatagramSockets
• User	Datagram	Protocol	(UDP)	

Ø Popular	protocol	that	Java	uses	to	implement	
datagram	sockets	

• No	connec(on	between	sockets	
Ø A	socket	is	opened	to	another	socket	but	no	
connec(on	is	actually	made	

Ø When	a	message	is	passed	to	socket,	it	is	sent	over	
network	to	other	socket	
• Most	of	the	(me	it	gets	there	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 26	

14	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 27	

Example	Java	Client	Program	
1.  Connect	to	a	server	(another	host	on	the	

network)	
2. Open	a	stream	to	a	certain	port	
3.  Display	what	the	server	sends	

What	Does	This	Code	Do?	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 28	

public class SocketTest {

public static void main(String argv[]) {
try {

Socket s = new Socket("time-d.nist.gov", 13);
BufferedReader in = new BufferedReader( 

new InputStreamReader(s.getInputStream()));

String line = null;
while ((line = in.readLine()) != null) {

System.out.println(line);
}

} catch (IOException exc) {
System.out.println("Error:" + exc);

}
}

}

Review: What’s the difference
between Readers and Streams?

15	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 29	

Reading	from	a	Socket	

•  Creates	a	socket	that	connects	to	host	with	specified	name	
at	port	13	

• getInputStream() gets	a	byte	stream	that	reads	from	
the	socket	

• InputStreamReader	wraps	the	byte	stream	and	a	
BufferedReader	wraps	the	InputStreamReader

• BufferedReader	reads	all	characters	sent	by	the	server	
using	readLine()	and	displays	each	line	to	System.out	

Socket s = new Socket("time-d.nist.gov", 13);
BufferedReader in = new BufferedReader( 

new InputStreamReader(s.getInputStream()));
String line = null;
while ((line = in.readLine()) != null) {

System.out.println(line);
}

Network	I/O	and	Excep(ons	
•  Networking	code	is	inside	of	a	try	block	
•  A	number	of	things	can	go	wrong	with	network	
communica(ons	
Ø A	power	failure	knocks	out	an	intermediate	router	or	switch	
Ø A	misconfigura(on	
Ø Someone	tripping	over	a	cable	

•  If	any	of	these	errors	are	detected,	an	IOException	
is	generated	

•  Any	program	performing	network	communica(on	
should	handle	such	excep(ons	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 30	

16	

Host	Names	and	IP	Addresses	
• A	host	name	is	passed	into	the	Socket	
constructor	
Ø Not	an	IP	address	(if	desired,	pass	in	an	
InetAddress	object)	

• Java	uses	the	Domain	Name	Service	(DNS)	to	
resolve	the	host	name	into	an	IP	address	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 31	

Host	Names	and	IP	Addresses	
• Alterna(ve:	use	constructor	with	
InetAddress
Ø No	InetAddress constructor		

• InetAddress’s	sta(c	method,	getByName()	

	returns	an	InetAddress	object	that	
encapsulates	the	sequence	of	four	bytes	
137.113.118.203

	
Sept	11,	2017	 Sprenkle	-	CSCI	325	 32	

InetAddress addr =
InetAddress.getByName("www.cs.wlu.edu");

17	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 33	

Mul(ple	IP	Addresses	per	Host	

• A	host	can	have	>	1	IP	address	
Ø Facilitate	load-balancing	
Ø Example:	www.espn.com	corresponds	to	8	IP	
addresses	
• One	can	be	picked	at	random	whenever	host	is	
accessed	(usually	just	the	first)	

• To	determine	all	of	the	IP	addresses	of	a	
specific	host,	call	getAllByName()…	
InetAddress[] addresses = InetAddress.getAllByName(

"www.cnn.com");

Returns the IPv4 and IPv6 address

The	Loopback	Address	and	localhost	
• Hostname	localhost	represents	the	local	host	
• localhost	corresponds	to	the	IP	address	
127.0.0.1,	which	is	known	as	the	loopback	
address	
Ø A	special	IP	address	that	means	“the	computer	
connected	right	here”	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 34	

18	

Determining	the	Local	Address	
•  If	program	calls	getByName("localhost"),	
returns	IP	address	127.0.0.1	

• To	get	the	actual	IP	address	of	the	host,	call	
getLocalHost()
Ø Returns	actual	IP	address	of	the	host	on	the	network	

• Example:	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 35	

InetAddress address =
InetAddress.getLocalHost();

InetAddressTest.java

Web	Server:	Processing	Requests	
• Receives	GET/POST	requests	from	users	
• Processes	requests	

Ø Given	to	appropriate	applica(on	to	handle	
• PHP,	ASP,	Java	Servlet	Container,	…	

Ø Handles	sta(c	requests	by	sending	document	to	
requestor	
• Or	appropriate	error	message	if	the	file	does	not	exist	
or	the	file	does	not	have	appropriate	read	permissions	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 36	

19	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 37	

A	Web	Server:	Handling	Requests	
• Has	one	thread	per	client	to	handle	request	

Ø Limit	on	number	of	threads,	as	discussed	

• Serves	files	from	some	directory	
Ø My	web-accessible	files	are	in	/home/www/
users/sprenkle

Ø But	users	access	with	resource	name	~sprenkle
Ø Server	maintains	mapping	from	~sprenkle to	
appropriate	loca(on	

Ø (Called	DocumentRoot	in	Apache)	

HTTP	Protocol	
• Client	request:	

	
	
	

• Server		
Ø Parses	request	

• Request	type,	resource,	protocol	
Ø Responds	to	request	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 38	

Client	 Server	

GET /index.html HTTP/1.0 \n  
<optional body, multiple lines> \n  
\n

Don’t type \n, just use carriage return

20	

HTTP	Protocol:	Server	Response	
•  Ini(al	response	line	(status	line)	

• Header	lines	
Ø Informa(on	about	response	or	about	object	sent	in	
message	body	

• Requested	document	
• Example:	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 39	

HTTP/1.0 200 OK
HTTP/1.0 404 Not Found

HTTP/1.1 200 OK
Date: Wed, 06 Sep 2017 23:44:26 GMT
Server: Apache/2.4.6 (Red Hat Enterprise Linux)
PHP/5.5.38
…
 
<html> <body> (file contents) . . .  
</body>  
</html>

Can also be found in request

Status	Codes	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 40	

Code	 Meaning	

200	 OK:	Request	succeeded	

3xx	 Redirec(on	(temporary	or	permanent)	

400	 Error:	Bad	Request.		Could	not	be	understood	by	
server	b/c	malformed	syntax	

403	 Error:	No	permission	

404	 Error:	File	not	found	

500	 Internal	server	error	

21	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 41	

The	Socket	Abstrac(on	

• OUen,	client	wants	to	send	data	to	server	as	well	
as	receive	data	from	the	server	

• Sockets	are	bi-direc(onal	
• Each	end	of	socket	has	input/output	

Ø Need	to	open	an	output	stream	on	the	socket	

Client	 Server	

Socket	

Network	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 42	

public class ClientBiDirectionalSocketTest {

public static void main(String[] args) {
try {

Socket s = new Socket("time-d.nist.gov", 13);
BufferedReader in = new BufferedReader(new InputStreamReader( 

s.getInputStream()));
PrintWriter out = new PrintWriter(s.getOutputStream(),  

true); // auto-flush
// do stuff

} catch (IOException exp) {
System.out.println("Error:" + exp);

}
}

}

Program	opens	both	input	and	output	streams	on	the	same	socket	–	
to	both	read	from	and	write	to	the	server.	

22	

Clients	and	Servers	
• Client	opens	a	connec(on	to	a	host	(the	server)	
at	a	certain	address	at	a	certain	port	

• The	server	on	remote	host	must	be	listening	to	
that	port	and	wai(ng	for	a	client	to	connect	to	
that	port	

• AUer	client	connects,	server	obtains	a	socket	that	
is	an	abstrac(on	of	its	end	of	the	stream,	
connected	to	the	client	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 43	

How do we implement the server?

The	ServerSocket	Class	
•  Create	a	ServerSocket	object	by	specifying	the	port	
number	to	listen	to	…	

Ø Creates	a	server	socket	on	port	1999	
• Not	a	well-known	port	number	because	it	is	>	1024	

Ø ServerSocket	object	listens	for	connec(on	requests	on	
this	port	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 44	

ServerSocket server = new ServerSocket(1999);

23	

Accep(ng	a	Connec(on	

• Server	waits	for	a	client	request	to	connect	on	
that	port	by	calling	accept()
Ø accept: blocking	method	that	waits	indefinitely	
un(l	a	client	connects	to	the	port	

• When	client	connects,	accept() returns	a	
Socket	object	
Ø That	Socket	is	how	the	server	communicates	with	the	
client…	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 45	

// will block until a client connects
Socket incoming = server.accept();

Example:	An	Echo	Server	
• Specifica(on:	When	a	client	connects,	server	
reads	a	line	from	the	client	and	then	returns	a	
line	iden(cal	to	what	it	has	received	
Ø As	an	added	twist,	have	server	echo	back	what	it	
receives	in	all	capital	lefers	

• Known	as	an	echo	server	because	it	echoes	back	
what	it	receives	from	the	client	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 46	

24	

What	Do	We	Do	From	Here?	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 47	

public class CapsEchoServer {

public static void main(String[] args) {
try {

ServerSocket server = new ServerSocket(1999);
Socket incoming = server.accept();

} catch (IOException exc) {
System.out.println("Error:" + exc);

}
}

}

Any issues we’ll need to handle?

What	Do	We	Do	From	Here?	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 48	

public class CapsEchoServer {

public static void main(String[] args) {
try {

ServerSocket server = new ServerSocket(1999);
Socket incoming = server.accept();
// get incoming stream
// get outstream
// read from input, uppercase, send to output

} catch (IOException exc) {
System.out.println("Error:" + exc);

}
}

}

Issue	to	handle:		
Something	that	says	that	client	is	done?	

25	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 49	

public static void main(String[] args) {
try {

ServerSocket server = new ServerSocket(1999);
// will block until a client connects
Socket incoming = server.accept();
BufferedReader in = new BufferedReader(new InputStreamReader(

incoming.getInputStream()));
PrintWriter out = new PrintWriter( 

incoming.getOutputStream(), true);
out.println("Echo Server. Type BYE to exit");
String line = null;
while ((line = in.readLine()) != null) {

if (line.trim().equals("BYE"))
break;

else
out.println("Echo:" + line.trim());

}
incoming.close();

} catch (IOException e) {
e.printStackTrace();

}
}

ServerSocket	Summary	
• Purpose	of	a	ServerSocket	is	to	wait	for	
connec(ons	

• When	a	client	connects,	the	server	generates	a	
new	Socket	object,	which	is	the	server’s	
endpoint	of	the	connec(on,	and	returns	the	
socket	from	the	call	to	accept()	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 50	

26	

Servers	and	Mul(ple	Clients	
• Servers	should	handle	mul(ple	concurrent	
clients		

• If	server	only	allowed	1	client	to	connect	at	any	
given	(me,	a	client	can	monopolize	the	service	by	
remaining	connected	to	the	server	for	a	long	(me	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 51	

What does this sound like a job for?

Clients	and	Servers	
• Ques(on:	How	do	we	service	other	clients?	

Ø We	don’t	want	to	consume	the	server’s	resources	
with	just	one	client…	

• Three	choices	
Ø Mul(ple	threads	
Ø Mul(ple	processes	
Ø Event	queue	

Sept	11,	2017	 52	Sprenkle	-	CSCI	325	

27	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 53	

Mul(ple	Threads	Approach	
• When	server	returns	from	accept()	with	the	
Socket,	start	a	new	thread	to	handle	the	new	
connec(on		

• Main	server	thread	can	go	back	and	call	
accept()	again,	wai(ng	for	a	new	client	to	
connect	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 54	

A	Mul(threaded	Server	

while (true) {
Socket incoming = server.accept();
Thread clientThread = new ThreadedEchoHandler(incoming);
clientThread.start();

}

•  User-defined	ThreadedEchoHandler	class	
derives	from	Thread

•  Client	communica(on	loop	is	its	run()	method…	

MultiThreadedServer.java
ThreadedEchoHandler.java

28	

A	Mul(threaded	Server	Summary	
•  Each	connec(on	starts	a	new	thread	

Ø Mul(ple	clients	can	connect	to	the	server	at	the	same	(me	

•  As	soon	as	a	client	connects,	accept()	returns	a	
Socket	that	encapsulates	this	new	connec(on	
Ø socket	is	passed	into	new	thread	to	handle	connec(on	
Ø The	thread	is	then	started	and	deals	with	the	connec(on	from	
then	on	

•  The	main	thread	goes	back	to	wai(ng	for	a	new	
connec(on	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 55	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 56	

Mul(threaded	Server	Issues	
• Any	problems	with	having	a	thread	handle	each	
incoming	request?	

29	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 57	

Mul(threaded	Server	Issues	
• Any	problems	with	having	a	thread	handle	each	
incoming	request?	
Ø Performance	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 58	

Mul(threaded	Server	Issues	
• For	each	request,	must	create	a	thread	

Ø Overhead	in	crea(ng	threads	
• What	happens	if	receive	too	many	client	
requests	and	have	to	start/fork	too	many	
threads?	
Ø Machine	runs	out	of	memory	
Ø Machine	gets	bogged	down	
Ø Threads	can’t	make	progress	

30	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 59	

Mul(-threaded	Server	Solu(ons	

• ServerSocket(int port, int
backlog)
Ø Maximum	length	of	queue	
Ø AUer	backlog	requests,	addi(onal	requests	are	
refused	

• Create	a	thread	pool	
Ø Create	available	threads	at	startup	
Ø Get	one	of	these	threads	when	to	handle	requests	
Ø See	java.util.concurrent.Executors

Solution: limit # of incoming connections/threads available

Sept	11,	2017	 Sprenkle	-	CSCI	325	 60	

Socket	Timeouts	

• Reading	from	a	socket	indefinitely	is	a	bad	idea	
Ø Network	could	go	down,	causing	program	to	wait	
on	socket	forever	

• Java	supports	a	(meout	value		
Ø If	program	has	been	wai(ng	for	socket	for	
specified	(meout	interval,	an	Exception	is	
generated	

Ø Call	setSoTimeout()	on	the	socket,	in	ms	

Socket socket = new Socket("host", 1998);
socket.setSoTimeout(10000); // 10 second timeout	

31	

Example	Code	
• On	the	course	web	site	
• Few	comments	

Ø Encourage	you	to	read	code	and	figure	out	what	it	is	
doing	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 61	

Summary:	Implemen(ng	a	Server	
• How	do	we	create	network	connec(ons?	

Ø Sockets!	
Ø Java	uses	ServerSockets	and	Sockets	for	
clients	

Ø (C/C++	makes	no	dis(nc(on	between	client	and	
server	connec(ons)	

• How	does	the	server	support	mul(ple	clients	at	
once?	
Ø Using	mul(ple	threads	or	processes	
Ø Using	an	event	queue	

Sept	11,	2017	 62	Sprenkle	-	CSCI	325	

32	

Helpful	Hints	
• Check	out	the	links	on	the	assignment	page	
• Start	small	and	test	oUen	

Ø Small	implementa(on,	small	tests	

• Use	telnet	or	nc	for	preliminary	tes(ng	and	
experimenta(on	

• Use	browser:	
Ø hfp://localhost:8888/test.html	

Sept	11,	2017	 63	Sprenkle	-	CSCI	325	

Things	to	Watch	Out	For	
• Sockets/ports	are	“already	in	use”	

Ø Check	if	the	process	is	s(ll	running	
Ø Just	pick	a	new	port	for	a	few	minutes…	

• Leaving	ports	open	indefinitely		
Ø This	is	really	bad!	

Sept	11,	2017	 64	Sprenkle	-	CSCI	325	

33	

WRITE	UPS	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 65	

Why	writeups	at	all?	
•  Important	skill	

Ø Present	and	make	others	interested	in	what	you’re	
doing!	

Ø Organize	your	thoughts	
• May	reveal	issues,	gaps	in	knowledge	

• Verifica(on	of	your	understanding	
• Reading	good	papers	à	examples	for	good	
wri(ng	
Ø Learn	from	the	bad	examples	too	

• Prac(ce,	prac(ce,	prac(ce!	
Sept	11,	2017	 Sprenkle	-	CSCI	325	 66	

34	

Content	of	Write	Up	
•  Introduc(on	

Ø Mo(va(on,	goals,	challenges	

• Approach	
Ø Architecture	
Ø Implementa(on	

• Evalua(on	(if	necessary)	
• Discussion	

Ø Problems,	challenges,	future	work	

• Conclusions	
Sept	13,	2017	 Sprenkle	-	CSCI325	 67	

Common	Issues	
• Not	presen(ng	the	high-level	problems	and	
challenges	

• Not	using	correct	grammar,	spell	check	

Sept	13,	2017	 Sprenkle	-	CSCI325	 68	

35	

TODO	
• Start	on	Web	Server	project	

Ø Read	through	project	
Ø Make	a	team	(2-3)	
Ø Look	at	Socket	examples	

• Read	E2E	Argument	paper	for	Friday	
Ø Skim	through	once:	review	sec(on	headings	
Ø 3	hours	max	
Ø Annota(ons	–	in	Perusall	
Ø Friday:	Discuss	paper	and	ques(ons	

Sept	11,	2017	 Sprenkle	-	CSCI	325	 69	

