Objectives

Divide and Conquer: Matrix Multiplication

Introduction to Dynamic Programming
Weighted interval scheduling

Mar 15, 2019 CSCI211 - Sprenkle 1

Divide-and-Conquer Multiplication: Warmup

To multiply 2 n-digit integers:
Multiply 4 (pairs of) ¥an-digit integers
Add 2 %n-digit integers and shift to obtain result

Higher order bits Lower order bits x=10001101
x1=1000 xo=1101
Shife \ /
XT‘/Z')CI + X,
y o= 2"+
Xy = (2nlz'x1+ xo) (2”/2')’1 = J’o) = 2"y, + 277 (e 00 + XoYo

A B C D

What is the recurrence relation?
* How many subproblems?

* What is merge cost?

* What is its runtime?

Mar 15, 2019 CSCI211 - Sprenkle 2

3/15/19

Divide-and-Conquer Multiplication: Warmup

To multiply 2 n-digit integers:
» Multiply 4 (pairs of) ¥an-digit integers
» Add 2 ¥%n-digit integers and shift to obtain result

Higher order bits Lower order bits

Shift /
T~ \x .

2'1
2nl2.yl + Vo
(Zn/

y
224 Tox+ xo) (2"/2'371 = J’o) = 2"y, + 277 (e +xo0) + XoYo
A B C D
T(n) = 4T(n/2) + O®) = T(n)=O(n")
Y,
recursive calls add, shift
t Not an improvement
. over brute force
assumes n is a power of 2
Mar 15, 2019 CSCI211 - Sprenkle 3

Karatsuba Multiplication

To multiply two n-digit integers:
» Add 2 %n digit integers
» Multiply 3 %n-digit integers

il

> Add, subtract, and Shift Anatolii AIexeev'ich‘ Karat;ﬁba
%n-digit integers to obtain result

2" X+ x,
2”/2’}’1 + Yo
2"y + 2n/2'(x1J’0+on’1) + Xo)o

2"y + 2" '((xl +X0) 1 +) — x40 -xoyo) + XY
A B A C C

X

y
Xy

What is the recurrence relation? Runtime?

Mar 15, 2019 CSCI211 - Sprenkle 4

3/15/19

Karatsuba Multiplication

Theorem. [Karatsuba-Ofman, 1962]
Can multiply two n-digit integers in
O(n'>8>) bit operations

2" X+ x,

2n/2'Y1 + Y

2" x + 2n/2'(x1)’0+on’1) + %Yo

2" X + 2"’2-((x1+x0)(y1+y0) = X, = XoJo) + XoYo
A B A < C

xy

T(n) = T([n/2]) + T([n/2]) + T(1+[n/2]) + O()

recursive calls add, subtract, shift

= T(n) = O(**’) = 0(n'"*®)

Mar 15, 2019 CSCI211 - Sprenkle

MATRIX MULTIPLICATION

Mar 15, 2019 CSCI211 - Sprenkle

3/15/19

3/15/19

Matrix Multiplication

Given 2 n-by-n matrices A and B,
compute C=AB

cll 1n all all aln bll blZ
N b, b

- C. C. coo (@ a a e a
¢ = % aub,] I] I e
k=1 M M S . : :
C, 1 cnl ¢ anl anZ arm b 1 b 2

Ex:c,, =a;; by, +a, by, +a3 by, +.o+2a, b,
Row | of a
Solve using brute force ...
Mar 15, 2019 CSCI211 - Sprenkle

Matrix Multiplication

Given 2 n-by-n matrices A and B,
compute C = AB

. /
= b Ch 6y, a, a, - a, bu blZ
clj aik ki
k=1 G Cy G| (G Gp Gy, 52 bzl bzz o
€ Cn "t € a, a, a bm br|2

Ex:c,, =a;; by, +a, by, +a;3 by, +.o+2, b,

Brute force. ®(n3) arithmetic operations

Fundamental question: Can we improve upon

brute force?

Mar 15, 2019 CSCI211 - Sprenkle

Matrix Multiplication: Warmup

Divide: partition A and B into %n-by-’2n blocks
Conquer: multiply 8 %2n-by-%n recursively

Combine: add appropriate products using
4 matrix additions

G = (AnXBu) + (AuXle)
[Cn Clz] _ [An AIZ] 9 [Bn B12] C, = (4, xBy)+ (4,xBy)
G Cy Ay Ay B, By G, = (A21><B11) + (Aszle)
Gy = (A21XB12) + (A22X322)

’ Recurrence relation? Runtime? ‘

Mar 15, 2019 CSCI211 - Sprenkle

Matrix Multiplication: Warmup

Divide: partition A and B into ¥n-by-%n blocks
Conquer: multiply 8 Y2n-by-%n recursively

Combine: add appropriate products using
4 matrix additions

¢, = (A11XB11) + (AIZXBZI)
[Cll ClZ] _ [All AIZ] 9 [Bll BIZ] C, = (41xBy)+ (4,%By)
G Cy Ay Ay B, By Gy = (d4yxBy) + (4pxBy)
C, = (A21XB12) + (A22XB22)

T(n)= 8T(n/2) + on?) = T(n)=®(n3)
— 7Y

v — -
recursive calls add, form submatrices

Mar 15, 2019 CSCI211 - Sprenkle

10

3/15/19

3/15/19

Matrix Multiplication: Key Idea

Multiply 2-by-2 block matrices with only 7
multiplications and 15 additions

S G| [AL B] g o ks

C2] C22 AZI A22 BZI BZZ
B = (4 +4,)%x By
P = (4 +4y)x By,

Ci = B+P-P+K P, = 4, x(By - By)
C, = R+h B = (A +4,)x (B +B,y)
G, = B+F F = (dp—4y)x(By +By)
C, = B+R-B-P P = (4,-4) (B +B),)
Mar 15, 2019 CSCI211 - Sprenkle 11

Fast Matrix Multiplication

[Strassen, 1969]

Divide: partition A and B into
%n-by-%n blocks

Compute: 14 %:n-by-%n matrices via
10 matrix additions

Conquer: multiply 7 %2n-by-%n
matrices recursively

Combine: 7 products into 4 terms
using 8 matrix

Volker Strassen

additions Toy= TT(/2)s O = T(i)=6*7)= 0™
1 —_—
A n a |ys I S . recursive calls add, subtract

Assume n is a power of 2.
T(n) = # arithmetic operations.

Mar 15, 2019 CSCI211 - Sprenkle 12

Fast Matrix Multiplication in Practice

Implementation issues:

problems putting theory into practice
Sparsity
Caching effects
Numerical stability

Theoretically correct but possible problems with
round off errors, etc

Odd matrix dimensions
Crossover to classical algorithm around
n=128

Mar 15, 2019 CSCI211 - Sprenkle 13

Fast Matrix Multiplication in Practice

Common misperception:
“Strassen is only a theoretical curiosity.”

Advanced Computation Group at Apple Computer

reports 8x speedup on G4 Velocity Engine
when n ~2,500

Range of instances where it’s useful is a subject of
controversy

Can “Strassenize” Ax=b, determinant,
eigenvalues, and other matrix ops

Mar 15, 2019 CSCI211 - Sprenkle 14

3/15/19

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar
multiplications?
A. Yes! [Strassen, 1969] 07y =0(n**")

Q. Multiply two 2-by-2 matrices with only 6 scalar
multiplications?

A. Impossible [Hopcroft and Kerr, 1971] O(n 2% = 0(n*¥)
Q. Two 3-by-3 matrices with only 21 scalar multiplications?
A. Also impossible 0=y = 0(n>")

Q. Two 70-by-70 matrices with only 143,640 scalar
multiplications?
A. Yes! [Pan, 1980] O (=0 190) _ 0230

Decimal wars.
December 1979: O(n?°%1813)
January 1980: 0(n?521801)

Mar 15, 2019 CSCI211 - Sprenkle 15

Fast Matrix Multiplication in Theory

Best known. O(n237s)
[Coppersmith-Winograd, 1987]
But really large constant

Conjecture. O(n?*) for any £ > 0.

Caveat. Theoretical improvements to Strassen
are progressively less practical.

Mar 15, 2019 CSCI211 - Sprenkle 16

3/15/19

Algorithmic Paradigms

Greedy. Build up a solution incrementally,
myopically optimizing some local criterion

Divide-and-conquer. Break up a problem into sub-
problems, solve each sub-problem independently,
and combine solution to sub-problems to form
solution to original problem

Dynamic programming. Break up a problem into a
series of overlapping sub-problems, and build up
solutions to larger and larger sub-problems

Mar 15, 2019 CSCI211 - Sprenkle 18

WEIGHTED
INTERVAL SCHEDULING

Mar 15, 2019 CSCI211 - Sprenkle 28

3/15/19

Weighted Interval Scheduling

Job j starts at s, finishes at f, and has weight or value v,
Two jobs are compatible if they don't overlap

Goal: find maximum weight subset of mutually compatible
jobs

Time

0 I 2 3 4 5 6 7 8 9 10 I
Mar 15, 2019 CSCI211 - Sprenkle 29

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are
1 (or equivalent).
Consider jobs in ascending order of finish time

Add job to subset if it is compatible with previously
chosen jobs

What happens to Greedy algorithm
if we add weights to the problem?

Mar 15, 2019 CSCI211 - Sprenkle 30

3/15/19

3/15/19

Limitation of Greedy Algorithm

Recall. Greedy algorithm works if all weights are
1 (or equivalent).
Consider jobs in ascending order of finish time
Add job to subset if it is compatible with previously
chosen jobs
Observation. Greedy algorithm can fail
spectacularly if arbitrary weights are allowed

weight = 999 b

weight = | a

Time
0 | 2 3 4 5 6 7 8 9 10 Il

Mar 15, 2019 CSCI211 - Spren Any other greedy approaches?

Limitations of Greedy Algorithms

Need to consider weight
No greedy algorithm works

Need a more complex algorithm to solve
problem

Mar 15, 2019 CSCI211 - Sprenkle 32

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <. .. <f,
Def. p(j) = largest index i < j such that job i is compatible with j
Ex: p(8)=5,p(7)=3,p(2)=0

Why is ordering by
- finish time useful in
' this problem?

Time

0 | 2 3 4 5 6 7 8 9 10 1
Mar 15, 2019 CSCI211 - Sprenkle 33

Dynamic Programming

Assume we have an optimal solution

OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., j

What is something obvious/trivial we can we say
about the optimal solution with respect to job j?

Mar 15, 2019 CSCI211 - Sprenkle 34

3/15/19

Dynamic Programming: Binary Choice

OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., j
Case 1: OPT selects job j

Case 2: OPT does not select job j

Explore both of these cases...
* What jobs are in OPT? Which are not!?

Keep in mind our definition of p

Mar 15, 2019 CSCI211 - Sprenkle 35

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <. .. <A,
Def. p(j) = largest index i < j such that job i is compatible with j
Ex: p(8)=5,p(7)=3,p(2)=0

Time

0 1 2 3 4 5 6 7 8 9 10 I
Mar 15, 2019 CSCI211 - Sprenkle 36

3/15/19

Dynamic Programming: Binary Choice

OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., j
Case 1: OPT selects job j
can't use incompatible jobs { p(j) + 1, p(j) + 2, ...,j- 1}

must include optimal solution to problem consisting
of remaining compatible jobs 1, 2, ..., p(j) ™\

optimal substructure

Case 2: OPT does not select job j «—

must include optimal solution to problem consisting
of remaining compatible jobs 1, 2, ..., j-1

Formulate OPT(j) as a recurrence relation

Mar 15, 2019 CSCI211 - Sprenkle 37

Dynamic Programming: Binary Choice

OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., j
Case 1: OPT selects job j
can't use incompatible jobs { p(j) + 1, p(j) + 2, ...,j- 1}
must include optimal solution to problem consisting
of remaining compatible jobs 1, 2, ..., p(j)
Case 2: OPT does not select job j

must include optimal solution to problem consisting
of remaining compatible jobs 1, 2, ..., j-1

Formulate OPT(j) in terms

of smaller subproblems . .
Which should we choose? Opt(j) = Opt(j-1)

Mar 15, 2019 CSCI211 - Sprenkle 38

Two options: Opt(j) = v; + Opt(p(j))

3/15/19

Dynamic Programming: Binary Choice

OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., j
Case 1: OPT selects job j
can't use incompatible jobs { p(j) + 1, p(j) + 2, ...,j- 1}
must include optimal solution to problem consisting
of remaining compatible jobs 1, 2, ..., p(j)
Case 2: OPT does not select job j

must include optimal solution to problem consisting
of remaining compatible jobs 1, 2, ..., j-1

Opt(j) = 0 j=0 Basecase
max{ v; + Opt(p(j)), Opt(j-1) } ~Otherwise Choose the “better”

of the two solutions
Mar 15, 2019 CSCI211 - Sprenkle 39

Weighted Interval Scheduling:
Recursive Algorithm

Input: n jobs (associated start time sj, finish time f;, and value v;)
Sort jobs by finish times so that f; < f, < ... < f,

Compute p(1), p(2), -, p(n) Closest compatible job
Compute-Opt(j):

ifj=0
return @ Picks | Doesn’t pick j
else

return max(v; + Compute-Opt(p(j)), Compute-Opt(j-1))

What is the runtime?
(Trace for n = 5)

Mar 15, 2019 CSCI211 - Sprenkle 40

3/15/19

Weighted Interval Scheduling:
Brute Force

Observation. Redundant sub-problems =
exponential algorithms

Ex. Number of recursive calls for family of
"layered" instances grows like Fibonacci

sequence. 5
4 3
1
2 3 2 2 1
4 2 1 1 0 1 0
5 |,
1 0
p(1) =0,p(j) =j-2
Mar 15, 2019 CSCI211 - Sprenkle 41

Weighted Interval Scheduling:
Memoization

Store results of each sub-problem in a cache;
lookup as needed.

Input: n jobs (associated start time sj, finish time f;, and value v;)

Sort jobs by finish times so that f; < f, < ... < f,
Compute p(1), p(2), .., p(n)

for j=1ton

M[0|:t|4[2]0= empty h global array
M-Compute-Opt(j):
if M[j] is empty:
M[31 = max(Cvj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

M-Compute-0pt(n) <:|

Mar 15, 2019 CSCI211 - Sprenkle 42

3/15/19

Example

Jobs labeled as

A-1
B:Z
C-3)
;D-4;
E-S_)
F-3
S
i =30 Time
0 | 2 3 4 5 6 7 8 9 10 I
M 0 A B C D E F G H
0
Mar 15, 2019 CSCI211 - Sprenkle 43
Exam p|e What is the value of p for each job!?
Jobs labeled as
A-1
B
C-3)
,D_4,
E_S,)
F-3
=2
in| =11 Time
0 | 2 3 4 5 6 7 8 9 10 I
M 0 A B C D E F G H
0
Mar 15, 2019 CSCI211 - Sprenkle 44

3/15/19

Example

Time

P(j)
0 A-1
0 -2
0 c3 A
A D-4
0 E-5
B - F;3 7
c S .
E -1
0 | 2 3 5 6 7 10 I
M 0 A B C D E G

Mar 15, 2019

CSCI211 - Sprenkle

45

Example

)
P
=

| + CO(E)

Time

0 A-1
0
0 c-3 A
A D-4
0 E-5
. —=—
c S .
E Bl
0 | 2 3 5 6 7 10 I
M 0 A B C D E G

Mar 15, 2019

CSCI211 - Sprenkle

46

3/15/19

Example
| + COE)
P()
0 "y (5+co@) | |cop)]
0 B:Z
0 C-3
A D-4:
0 E-5_)
B F-3
C G-2
E =t Time
0 | 2 3 4 5 6 7 8 9 10 I
M 0 A B C D E F G H
0
Mar 15, 2019 CSCI211 - Sprenkle 47
Example
| + COE)
P()
0 a1 (5+co | [cop)]
0 G
0 = | 4+co(A) | | co©) |
A D-4
0 E-5
B F-3
C G-2
E in| =11 Time
0 | 2 3 4 5 6 7 8 9 10 I

M 0 A B C D E F G

Mar 15, 2019 CSCI211 - Sprenkle

48

3/15/19

Example
| + CO(E)
P()
0 A1 5
0 =2
0 — | 4+co) || co© |
A T ’;
S | + CO(0) co(0)
o E-5))
B F-3
c o
E =t Time
0 | 2 3 5 6 7 9 10 I
M 0 A B C D E G H
0 1
Mar 15, 2019 L CSCI211 - Sprenkle 49
Example
| + CO(E)
P()
0 A-1
0 -2
0 c-3 A
A
DSEE 3+C(0) CO(B)
0 E-5))
B F-3
C G-2
E in| =11 Time
0 | 2 3 5 6 7 10 I
M 0 A B C D E G H
0 1
Mar 15, 2019 L CSCI211 - Sprenkle 50

3/15/19

20

Example

o
=
N

0 A-1
0
0 c-3
A
0 E-5 ,
B F-3 |2+ co@) | |com |
C G-2 |
E =t Time
0 | 2 3 5 6 7 8 9 10 I
M 0 A B D E F G H
0 1
Mar 15, 2019 L CSCI211 - Sprenkle 51
Example
P()
0 A-1
0
0 c-3
A D-4
0 E-5 ,
B F-3
C G-2 |
E in| =11 Time
0 | 2 3 5 6 7 8 9 10 I
M 0 A B D E F G H
0 1
Mar 15, 2019 L CSCI211 - Sprenkle 52

3/15/19

21

Example

o
=
N

0 A-1
0 B-2
0 c3
A D-4
0 E-5
B V F-:3 7
C G- |
E -1
0 | 2 3 4 5 6 7 10 I
M 0 A B C D E G H
0 1 2
Mar 15, 2019 L L CSCI211 - Sprenkle

Time

53

Example

)
P
=

Time

0 A-1

0 G

0 Ga3

A D-4 .
. . 3

0 E-5 ,

B F-3

C G- |

E -1

0 | 2 3 4 5 6 7 10 I
M 0 A B C D E G H

0 1 2 3

Mar 15, 2019 L L L CSCI211 - Sprenkle

54

3/15/19

22

Example
| + CO(E)
P()
0 A-1
0 B-2
0 c-3 |
A -4
0 s
B -3
C 4
E =0 Time
o I 2 3 4 6 01
M 0 A B C D E G H
0 1 2 3 5
Mar 15, 2019 L L Csc | - Sprenkle 55
Example
P()
0 A
0 . B-2
0 c-3 |
A -4
0
B -3
C 4
E =1 Time
0 | 2 3 4 6 10 I
M 0 A B C D E G H
0 1 2 3 5 5

Mar 15, 2019 L L

L CC L -SHR:

56

3/15/19

23

Example

P()

0 A-1

0 B:Z

0 Cc-3 |

A -4

0 -

B -3

C G2

E =t Time

0 | 2 3 4 6 8 9 10 I
M 0 A B C D E F G H
0 1 2 3 5 5
Mar 15, 2019 LL L CSCl | -Si R 57
Example

P()

0 o [2+co)| | cop |
0 it

0 c-3 |

A -4

0

B =

C R

E in| =11 Time

0 | 2 3 4 6 8 9 10 I
M 0 A B C D E F G H
0 1 2 3 5 5
Mar 15, 2019 L L L CC L -SHR: 58

3/15/19

24

Example

P(j)

0 A-1

0 2

0 == |3+co@) | | cog) |
A 7D-47

0 E-5

B F-3

C G-2

E =t Time

0 | 2 3 5 6 7 8 9 10 I
M 0 A B C D E F G H
0 1 2 3 5 5
Mar 15, 2019 L L L CSCl L -Si LR 59
Example

P()

0 A-1

0

0 c-3)

A 7D-47

0 E_S,)

B F-3

C G-2

E in| =11 Time

0 | 2 3 5 [3 7 8 9 10 I
M 0 A B C D E F G H
0 1 2 3 5 5 5
Mar 15, 2019 L L L CC L -Si R LR 60

3/15/19

25

Example
P()
0 A-1
0 -
0 c-3 |
A -4
0 -5
B =
C R
E i =11 Time
0 | 2 3 6 9 10 I
M 0 A B C D E F G H
0 1 2 3 5 5 5 5
Mar 15, 2019 LoL L CSCL-SiUR® LR LR 61
Example

P()

0 A-1

0

0 c-3 |

A -4

0 -5

B =

C G2

E H-1 Time

0 | 2 3 6 9 10 I
M 0 A B C D E F G H
0 1 2 3 5 5 5 5 6
Mar 15, 2019 L L L CCL-SSUR® LR LR L 62

3/15/19

26

Exam

Focused on greedy and divide and conquer

Rules
Open brain notes, textbook, wiki, solutions on Sakai, my lecture

notes
Limited me
Closed everything else

Adjustments
No class on Monday — additional office hours during that time

No wiki for next week
May want to review D&C chapters not in the wiki

Office hours:
Monday: 9:45 — 10:45 (class) — noon, 2:35—-5 p.m.
Wednesday: 2:35-5 p.m.
Thursday: 2:35 p.m.- 5 p.m.
Sign up in Box Note

Mar 15, 2019 CSCI211 - Sprenkle 63

3/15/19

27

