Objectives

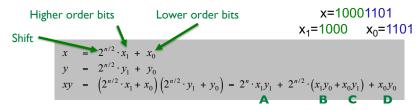
- Divide and Conquer: Matrix Multiplication
- Introduction to Dynamic Programming
 - Weighted interval scheduling

Mar 15, 2019

CSCI211 - Sprenkle

- To multiply 2 n-digit integers:
 - ➤ Multiply 4 (pairs of) ½n-digit integers
 - ➤ Add 2 ½n-digit integers and shift to obtain result

Divide-and-Conquer Multiplication: Warmup



What is the recurrence relation?

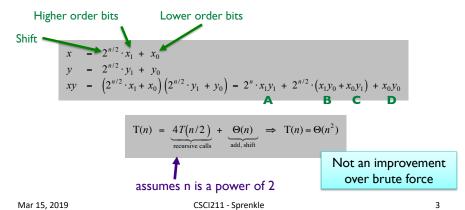
- How many subproblems?
- What is merge cost?
- What is its runtime?

Mar 15, 2019

CSCI211 - Sprenkle

Divide-and-Conquer Multiplication: Warmup

- To multiply 2 n-digit integers:
 - ➤ Multiply 4 (pairs of) ½n-digit integers
 - > Add 2 ½n-digit integers and shift to obtain result



Karatsuba Multiplication

- To multiply two n-digit integers:
 - ➤ Add 2 ½n digit integers
 - ➤ Multiply 3 ½n-digit integers
 - Add, subtract, and shift ½n-digit integers to obtain result

Anatolii Alexeevich Karatsuba

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0$$

$$= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) + x_0 y_0$$
A
B
A
C
C

What is the recurrence relation? Runtime?

Mar 15, 2019

CSCI211 - Sprenkle

Karatsuba Multiplication

 Theorem. [Karatsuba-Ofman, 1962]
 Can multiply two n-digit integers in O(n^{1.585}) bit operations

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0$$

$$= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) + x_0 y_0$$
A
B
A
C
C

$$T(n) \leq \underbrace{T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + T(1 + \lceil n/2 \rceil)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, subtract, shift}}$$

$$\Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585})$$

Mar 15, 2019

CSCI211 - Sprenkle

5

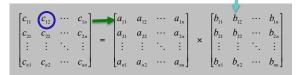
MATRIX MULTIPLICATION

Mar 15, 2019

CSCI211 - Sprenkle

Matrix Multiplication

 Given 2 n-by-n matrices A and B, compute C = AB



Ex:
$$c_{12} = a_{11} b_{12} + a_{12} b_{22} + a_{13} b_{32} + ... + a_{1n} b_{n2}$$

Row I of a Column 2 of b

Solve using brute force ...

Mar 15, 2019

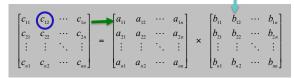
CSCI211 - Sprenkle

7

Matrix Multiplication

 Given 2 n-by-n matrices A and B, compute C = AB

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$



- \triangleright Ex: $c_{12} = a_{11} b_{12} + a_{12} b_{22} + a_{13} b_{32} + ... + a_{1n} b_{n2}$
- Brute force. $\Theta(n^3)$ arithmetic operations
- Fundamental question: Can we improve upon brute force?

Mar 15, 2019

CSCI211 - Sprenkle

Matrix Multiplication: Warmup

- Divide: partition A and B into ½n-by-½n blocks
- Conquer: multiply 8 ½n-by-½n recursively
- Combine: add appropriate products using 4 matrix additions

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21})$$

$$C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})$$

$$C_{21} = (A_{21} \times B_{11}) + (A_{22} \times B_{21})$$

$$C_{22} = (A_{21} \times B_{12}) + (A_{22} \times B_{22})$$

Recurrence relation? Runtime?

Mar 15, 2019

CSCI211 - Sprenkle

g

Matrix Multiplication: Warmup

- Divide: partition A and B into ½n-by-½n blocks
- Conquer: multiply 8 ½n-by-½n recursively
- Combine: add appropriate products using 4 matrix additions

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21})$$

$$C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})$$

$$C_{21} = (A_{21} \times B_{11}) + (A_{22} \times B_{21})$$

$$C_{22} = (A_{21} \times B_{12}) + (A_{22} \times B_{22})$$

$$T(n) = \underbrace{8T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, form submatrices}} \Rightarrow T(n) = \Theta(n^3)$$

Mar 15, 2019

CSCI211 - Sprenkle

Matrix Multiplication: Key Idea

Trade expensive multiplication for less expensive addition/subtraction

 Multiply 2-by-2 block matrices with only 7 multiplications and 15 additions

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_5 + P_1 - P_3 - P_7$$

$$P_{1} = A_{11} \times (B_{12} - B_{22})$$

$$P_{2} = (A_{11} + A_{12}) \times B_{22}$$

$$P_{3} = (A_{21} + A_{22}) \times B_{11}$$

$$P_{4} = A_{22} \times (B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22}) \times (B_{11} + B_{22})$$

$$P_{6} = (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21}) \times (B_{11} + B_{12})$$

CSCI211 - Sprenkle Mar 15, 2019

Fast Matrix Multiplication

[Strassen, 1969]

- Divide: partition A and B into ½n-by-½n blocks
- Compute: 14 ½n-by-½n matrices via 10 matrix additions
- Conquer: multiply 7 ½n-by-½n matrices recursively
- Combine: 7 products into 4 terms using 8 matrix additions $T(n) = 7T(n/2) + \Theta(n^2) \implies T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$

11

Volker Strassen

Analysis.

Assume n is a power of 2.

T(n) = # arithmetic operations.

Mar 15, 2019

CSCI211 - Sprenkle

Fast Matrix Multiplication in Practice

- Implementation issues:
 problems putting theory into practice
 - Sparsity
 - Caching effects
 - Numerical stability
 - Theoretically correct but possible problems with round off errors, etc

13

- Odd matrix dimensions
- Crossover to classical algorithm around
 n = 128

Mar 15, 2019 CSCI211 - Sprenkle

Fast Matrix Multiplication in Practice

- Common misperception:
 "Strassen is only a theoretical curiosity."
 - ➤ Advanced Computation Group at Apple Computer reports 8x speedup on G4 Velocity Engine when n ~2,500
 - Range of instances where it's useful is a subject of controversy
- Can "Strassenize" Ax=b, determinant, eigenvalues, and other matrix ops

Mar 15, 2019 CSCl211 - Sprenkle 14

15

Fast Matrix Multiplication in Theory

- Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
- A. Yes! [Strassen, 1969] $\Theta(n^{\log_2 7}) = O(n^{2.81})$
- Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
- A. Impossible [Hopcroft and Kerr, 1971] $\Theta(n^{\log_2 6}) = O(n^{2.59})$
- Q. Two 3-by-3 matrices with only 21 scalar multiplications?
- A. Also impossible $\Theta(n^{\log_3 21}) = O(n^{2.77})$
- Q. Two 70-by-70 matrices with only 143,640 scalar multiplications?
- A. Yes! [Pan, 1980] $\Theta(n^{\log_{70} 143640}) = O(n^{2.80})$
- Decimal wars.
 - December 1979: O(n^{2.521813})
 - > January 1980: O(n^{2.521801})

Mar 15, 2019 CSCI211 - Sprenkle

Fast Matrix Multiplication in Theory

- Best known. O(n^{2.376})
 [Coppersmith-Winograd, 1987]
 - ➤ But *really* large constant
- Conjecture. $O(n^{2+\epsilon})$ for any $\epsilon > 0$.
- Caveat. Theoretical improvements to Strassen are progressively less practical.

Mar 15, 2019 CSCl211 - Sprenkle 16

Algorithmic Paradigms

- Greedy. Build up a solution incrementally, myopically optimizing some local criterion
- Divide-and-conquer. Break up a problem into subproblems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem
- Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems

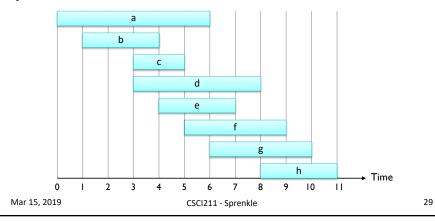
Mar 15, 2019 CSCI211 - Sprenkle 18

WEIGHTED INTERVAL SCHEDULING

Mar 15, 2019 CSCl211 - Sprenkle 28

Weighted Interval Scheduling

- Job j starts at s_i, finishes at f_i, and has weight or value v_i
- Two jobs are compatible if they don't overlap
- Goal: find maximum weight subset of mutually compatible jobs



Unweighted Interval Scheduling Review

- Recall. Greedy algorithm works if all weights are 1 (or equivalent).
 - > Consider jobs in ascending order of finish time
 - Add job to subset if it is compatible with previously chosen jobs

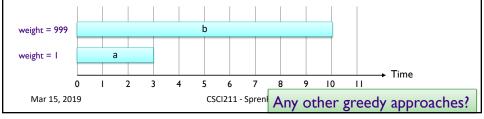
What happens to Greedy algorithm if we add weights to the problem?

Mar 15, 2019

CSCI211 - Sprenkle

Limitation of Greedy Algorithm

- Recall. Greedy algorithm works if all weights are 1 (or equivalent).
 - Consider jobs in ascending order of finish time
 - Add job to subset if it is compatible with previously chosen jobs
- Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed



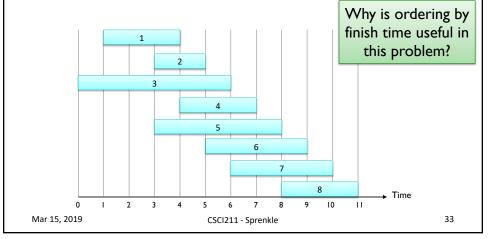
Limitations of Greedy Algorithms

- Need to consider weight
 - No greedy algorithm works
- Need a more complex algorithm to solve problem

Mar 15, 2019 CSCI211 - Sprenkle 32

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$ Def. p(j) = largest index i < j such that job i is compatible with jEx: p(8) = 5, p(7) = 3, p(2) = 0



Dynamic Programming

- Assume we have an optimal solution
- OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j

What is something obvious/trivial we can we say about the optimal solution with respect to job j?

Mar 15, 2019 CSCI211 - Sprenkle 34

Dynamic Programming: Binary Choice

- OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j
 - ➤ Case 1: OPT selects job *j*
 - Case 2: OPT does not select job j

Explore both of these cases...

• What jobs are in OPT? Which are not?

Keep in mind our definition of p

Mar 15, 2019

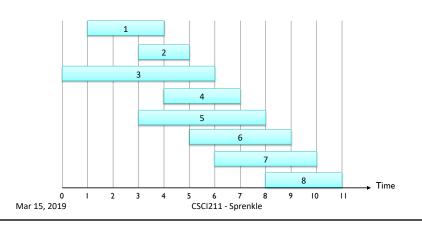
CSCI211 - Sprenkle

35

36

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$ Def. p(j) = largest index i < j such that job i is compatible with jEx: p(8) = 5, p(7) = 3, p(2) = 0



Dynamic Programming: Binary Choice

- OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j
 - Case 1: OPT selects job j
 - can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j) optimal substructure
 - Case 2: OPT does not select job j
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

Formulate OPT(j) as a recurrence relation

Mar 15, 2019

CSCI211 - Sprenkle

37

Dynamic Programming: Binary Choice

- OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j
 - Case 1: OPT selects job j
 - can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)
 - Case 2: OPT does **not** select job *j*
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

Formulate OPT(j) in terms of smaller subproblems Which should we choose?

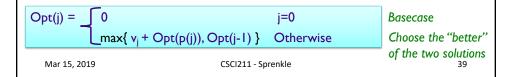
Two options: $Opt(j) = v_j + Opt(p(j))$ Opt(j) = Opt(j-1)

Mar 15, 2019

CSCI211 - Sprenkle

Dynamic Programming: Binary Choice

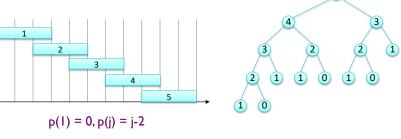
- OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j
 - Case 1: OPT selects job j
 - can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)
 - Case 2: OPT does not select job j
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1



Weighted Interval Scheduling: Recursive Algorithm Input: n jobs (associated start time s_j , finish time f_j , and value v_j) Sort jobs by finish times so that $f_1 \le f_2 \le \ldots \le f_n$ Compute p(1), p(2), ..., p(n) Closest compatible job Compute-Opt(j): if j = 0 return 0 else return $max(v_j + Compute-Opt(p(j)), Compute-Opt(j-1))$ What is the runtime? (Trace for n = 5) Mar 15, 2019 CSCI211- Sprenkle 40

Weighted Interval Scheduling: Brute Force

- ullet Observation. Redundant sub-problems \Rightarrow exponential algorithms
- Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.



Mar 15, 2019 CSCI211 - Sprenkle

41

Weighted Interval Scheduling: Memoization

 Store results of each sub-problem in a cache; lookup as needed.

```
Input: n jobs (associated start time s_j, finish time f_j, and value v_j)

Sort jobs by finish times so that f_1 \le f_2 \le \ldots \le f_n

Compute p(1), p(2), ..., p(n)

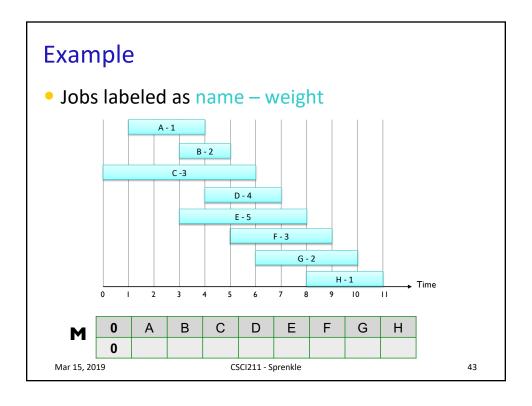
for j = 1 to p(j) = 0

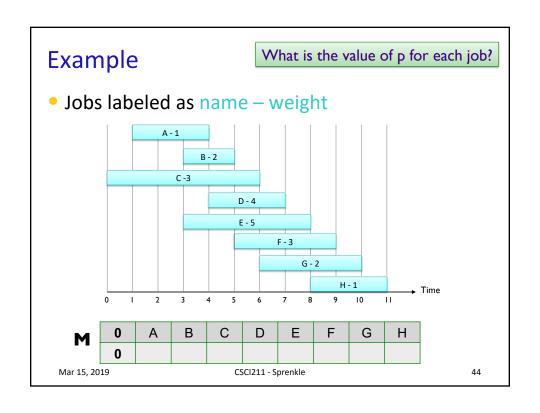
M-Compute-Opt(p(j) = 0

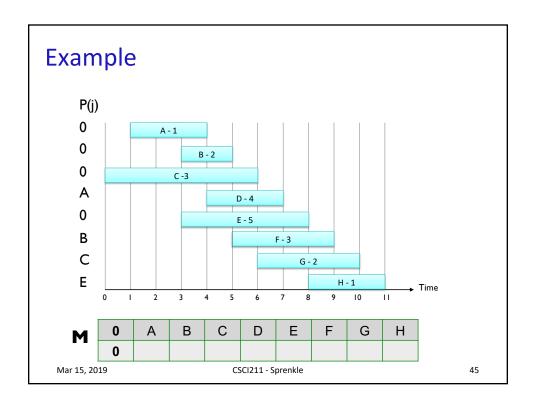
Call function with initial input

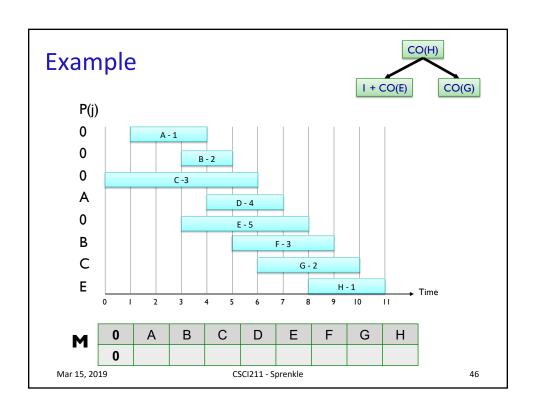
Mar 15, 2019

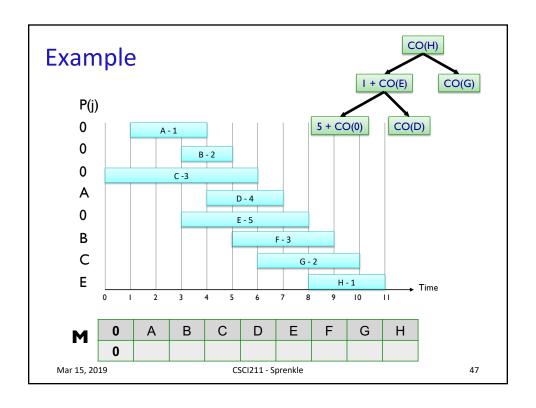
CSCI211-Sprenkle
```

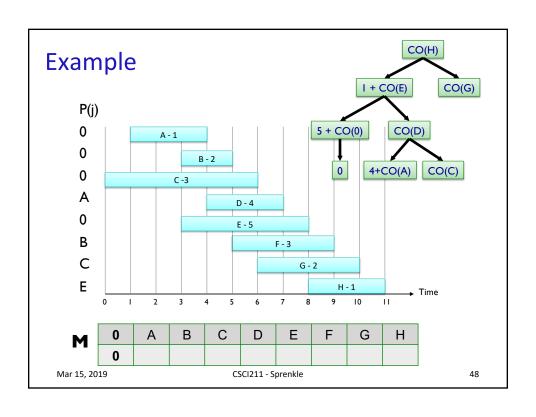


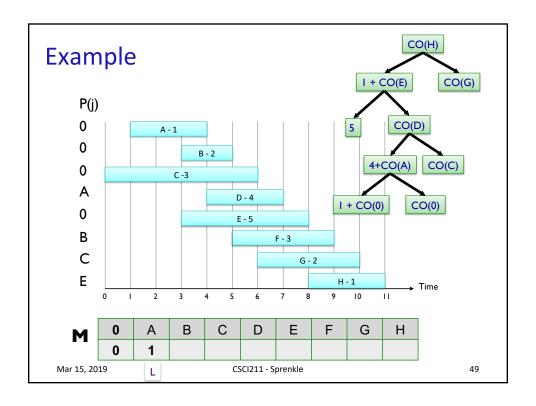


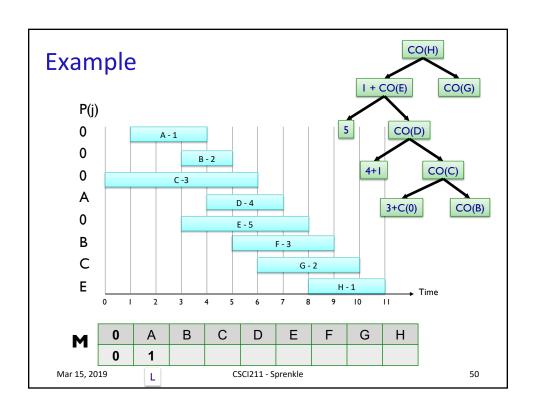


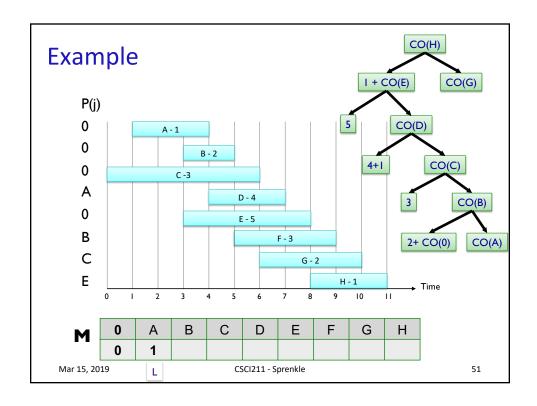


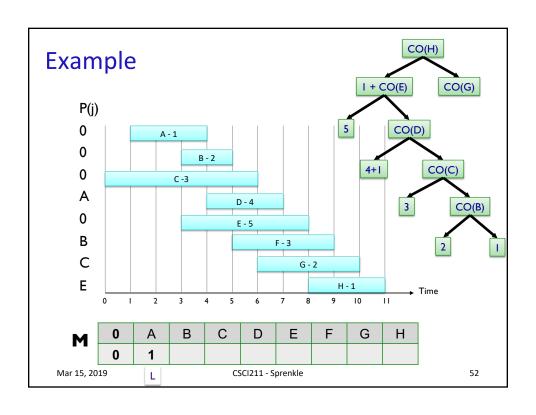


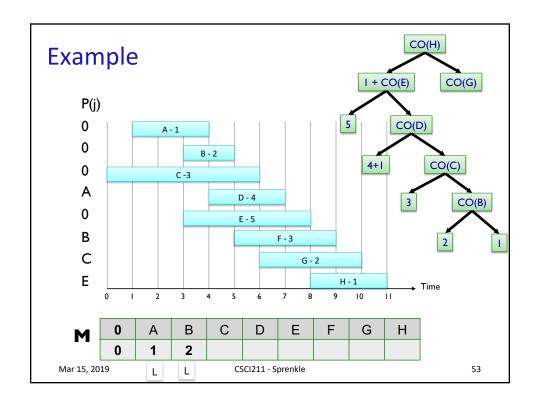


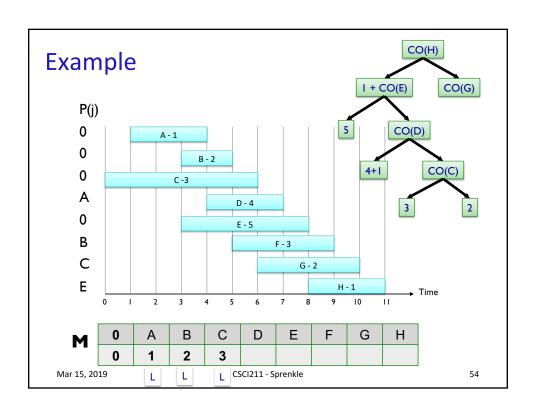


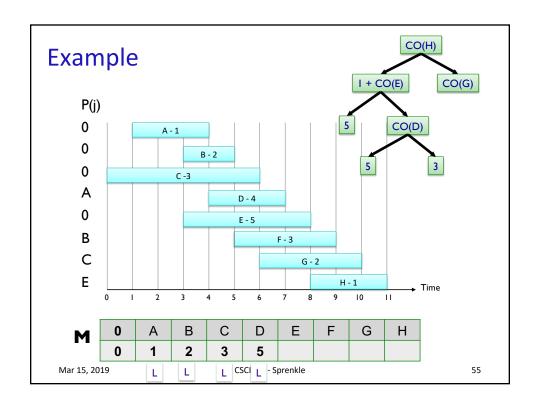


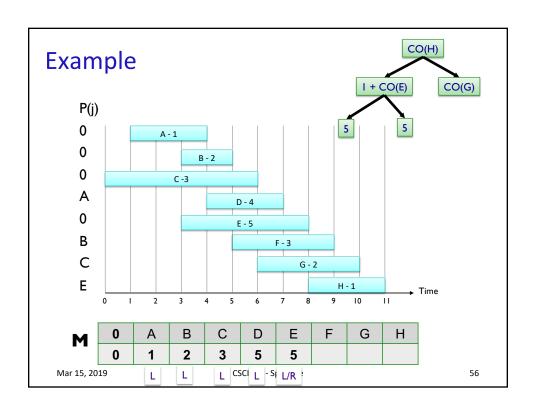


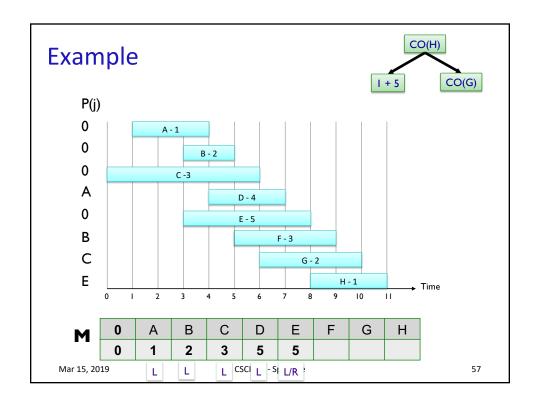


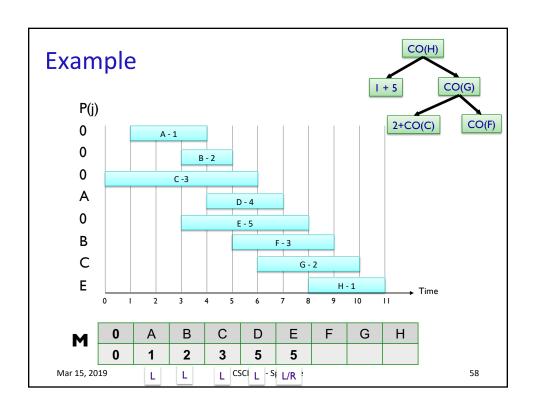


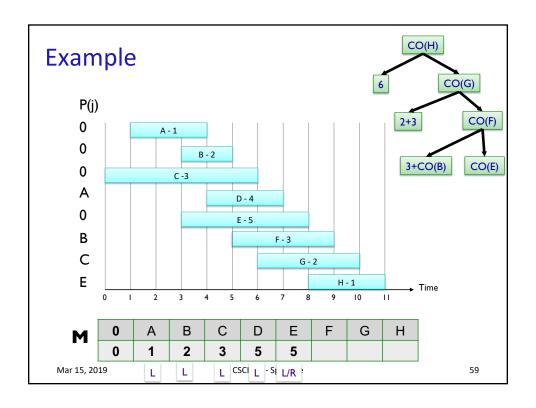


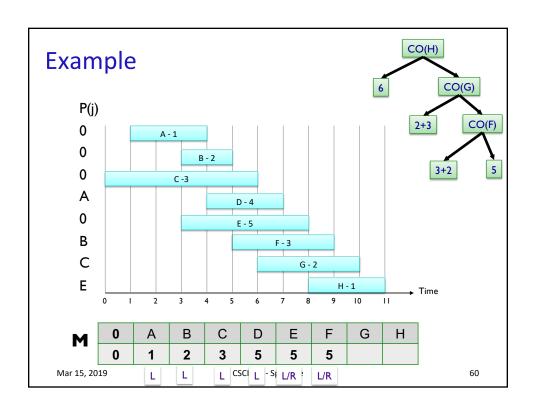


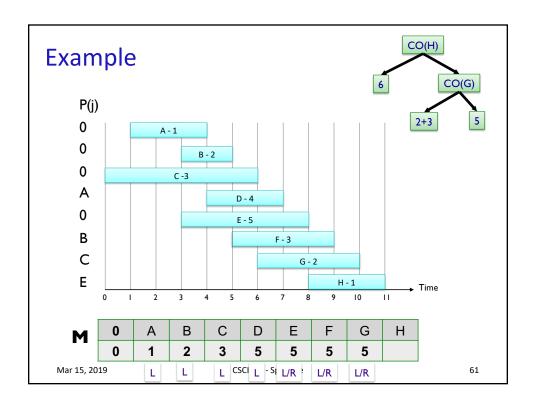


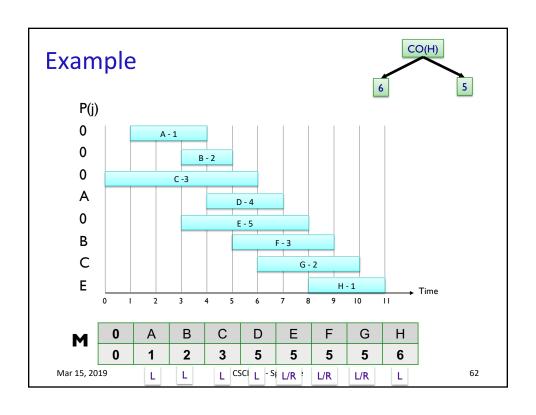












Exam

- Focused on greedy and divide and conquer
- Rules
 - Open brain notes, textbook, wiki, solutions on Sakai, my lecture notes
 - Limited me
 - Closed everything else
- Adjustments
 - No class on Monday additional office hours during that time
 - No wiki for next week
 - May want to review D&C chapters not in the wiki
 - Office hours:
 - Monday: 9:45 10:45 (class) noon, 2:35 5 p.m.
 - Wednesday: 2:35-5 p.m.
 - Thursday: 2:35 p.m.- 5 p.m.
 - Sign up in Box Note

Mar 15, 2019 CSCI211 - Sprenkle 63