
2/1/19

1

Objectives
• Wrap up: Implementing BFS and DFS
• Graph Application: Bipartite Graphs

Feb 1, 2019 1CSCI211 - Sprenkle

Turn in your problem set

Review
• What are two ways to find a connected

component?
ØHow are their results similar? Different?

• What was the runtime for BFS?
• What is the runtime for DFS?

ØReview what you have so far…

Feb 1, 2019 CSCI211 - Sprenkle 2

2/1/19

2

Review: Breadth-First Search
• Intuition. Explore outward from s in all possible

directions (edges), adding nodes one "layer" at a
time

• Algorithm
Ø L0 = { s }
Ø L1 = all neighbors of L0

Ø L2 = all nodes that have an edge to a node in L1 and
do not belong to L0 or L1

Ø Li+1 = all nodes that have an edge to a node in Li and
do not belong to an earlier layer

Feb 1, 2019 CSCI211 - Sprenkle 3

s L1 L2 L n-1

L0

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
For each node u Î L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

Analysis: Tighter Bound

Feb 1, 2019 CSCI211 - Sprenkle

A
t

m
os

t
nO(n2)

n

4

A
t

m
os

t
n-

1

Because we’re going to look at each node at most once

2/1/19

3

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
For each node u Î L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

Analysis: Even Tighter Bound

Feb 1, 2019 CSCI211 - Sprenkle

O(deg(u))
A

t
m

os
t

n

n

à O(n+m)
5

SuÎV deg(u) = 2m

Implementing DFS
• Keep nodes to be processed in a stack

Feb 1, 2019 CSCI211 - Sprenkle

DFS(s, G):
Initialize S to be a stack with one element s
Explored[v] = false, for all v
Parent[v] = 0, for all v
DFS tree T = {}
while S != {}

Take a node u from S
if Explored[u] = false

Explored[u] = true
Add edge (u, Parent[u]) to T (if u ≠ s)
for each edge (u, v) incident to u

Add v to the stack S
Parent[v] = u

6

What is the runtime?
How many times is a node added/removed from the stack?

2/1/19

4

DFS(s, G):
Initialize S to be a stack with one element s
Explored[v] = false, for all v
Parent[v] = 0, for all v
DFS tree T = {}
while S != {}

Take a node u from S
if Explored[u] = false

Explored[u] = true
Add edge (u, Parent[u]) to T (if u ≠ s)
for each edge (u, v) incident to u

Add v to the stack S
Parent[v] = u

Analyzing DFS

Feb 1, 2019 CSCI211 - Sprenkle

deg(u)

O(n+m)

7

O(n)

A node is added/removed from the stack 2* deg(u)
All nodes are added 2m = O(m) times

Analyzing
Finding All Connected Components
• How can we find the set of all connected

components of the graph?

Feb 1, 2019 CSCI211 - Sprenkle

Claim: Running time is O(m+n)

8

R* = set of connected components (a set of sets)

while there is a node that does not belong to R*

select s not in R*

R = {s}

while there is an edge (u,v) where u∈R and v∉R
add v to R

Add R to R*

But the inner loop is O(m+n)!
How can this RT be possible?

2/1/19

5

Consider: Finding All Connected Components
for This Graph

• What would the process look like?
• What is the runtime for the major steps?

Feb 1, 2019 CSCI211 - Sprenkle 9

Set of All Connected Components
• How can we find the set of all connected

components of the graph?

Feb 1, 2019 CSCI211 - Sprenkle 10

Where i is the subscript of the
connected component

R* = set of connected components (a set of sets)

while there is a node that does not belong to R*

select s not in R*

R = {s}

while there is an edge (u,v) where u∈R and v∉R
add v to R

Add R to R*

Imprecision in the running time
of inner loop: O(m+n)

But that’s m and n of the
connected component,
let’s say mi and ni .
Σi O(mi+ ni) = O(m+n)

2/1/19

6

Consider: Finding All Connected Components
for This Graph

• Find each connected component
ØRuntime: that connected component’s nodes and

edges

Feb 1, 2019 CSCI211 - Sprenkle 11

BIPARTITE GRAPHS

12Feb 1, 2019 CSCI211 - Sprenkle

2/1/19

7

Bipartite Graphs

• Def. An undirected graph G = (V, E) is bipartite if

the nodes can be colored red or blue such that

every edge has one red and one blue end

ØGenerally: vertices divided into sets X and Y

• Applications:

Ø Stable matching:

• men = red, women = blue

Ø Scheduling:

• machines = red, jobs = blue

Feb 1, 2019 CSCI211 - Sprenkle 13

a bipartite graph

Testing Bipartiteness
• Given a graph G, is it bipartite?
• Many graph problems become:

Ø Easier if underlying graph is bipartite (e.g., matching)
Ø Tractable if underlying graph is bipartite (e.g.,

independent set)
• Before designing an algorithm, need to understand

structure of bipartite graphs

Feb 1, 2019 CSCI211 - Sprenkle 14

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite
graph G: another

drawing of G:

2/1/19

8

How Can We Determine if a Graph is
Bipartite?

• Given a connected graph
1. Color one node red

• Doesn’t matter which color (Why?)
ØWhat should we do next?

Feb 1, 2019 CSCI211 - Sprenkle 15

Why connected?

v1

v2 v3

v6 v5 v4

v7

• How will we know when
we’re finished?

• What does this process
sound like?

An Obstruction to Bipartiteness
• Lemma. If a graph G is bipartite, it cannot

contain an odd-length cycle.

Feb 1, 2019 CSCI211 - Sprenkle 16

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

2/1/19

9

An Obstruction to Bipartiteness
• Lemma. If a graph G is bipartite, it cannot

contain an odd-length cycle.
• Pf. Not possible to 2-color the odd cycle, let

alone G.

Feb 1, 2019 CSCI211 - Sprenkle 17

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

If find an odd cycle,
graph is NOT bipartite

How Can We Determine if a Graph is
Bipartite?
• Given a connected graph

ØColor one node red
• Doesn’t matter which color (Why?)

ØWhat should we do next?
• How will we know that we’re finished?
• What does this process sound like?

ØBFS: alternating colors, layers

Feb 1, 2019 CSCI211 - Sprenkle 18

L1 L2 L3

How can we implement the algorithm?

2/1/19

10

Implementing Algorithm

• Modify BFS to have a Color array

• When add v to list L[i+1]

ØColor[v] = red if i+1 is even

ØColor[v] = blue if i+1 is odd

Feb 1, 2019 CSCI211 - Sprenkle 19

L1 L2 L3

What is the running time of this algorithm?What is the running time of this algorithm? O(n+m)

Marks a change in how we think about algorithms
Starting to apply known algorithms to solve new problems

Analyzing Algorithm’s Correctness
• Lemma. Let G be a connected graph, and let L0, …,

Lk be the layers produced by BFS starting at node s.
Exactly one of the following holds:
Ø (i) No edge of G joins two nodes of the same layer

• G is bipartite
Ø (ii) An edge of G joins two nodes of the same layer

• G contains an odd-length cycle and hence is not bipartite

Feb 1, 2019 CSCI211 - Sprenkle 20

Case (i):

L1 L2 L3

Case (ii):

L1 L2 L3

2/1/19

11

Analyzing Algorithm’s Correctness

• Lemma. Let G be a connected graph, and let L0, …,
Lk be the layers produced by BFS starting at node s.
Exactly one of the following holds:
Ø (i) No edge of G joins two nodes of the same layer

• G is bipartite

• Pf. (i)
Ø Suppose no edge joins two nodes in the same layer
Ø Implies all edges join nodes on adjacent level
Ø Bipartition

Øred = nodes on odd levels
Øblue = nodes on even levels

Feb 1, 2019 CSCI211 - Sprenkle 21
L1 L2 L3

Analyzing Algorithm’s Correctness
• Lemma. Let G be a connected graph, and let L0, …,

Lk be the layers produced by BFS starting at node s.
Exactly one of the following holds:
Ø (ii) An edge of G joins two nodes of the same layer à

G contains an odd-length cycle and hence is not bipartite

Feb 1, 2019 CSCI211 - Sprenkle 22 22

z = lca(x, y)

• Pf. (ii)
Ø Suppose (x, y) is an edge with x, y in same

level Lj.
Ø Let z = lca(x, y) = lowest common ancestor
Ø Let Li be level containing z
Ø Consider cycle that takes edge from x to y,

then path y àz, then path from z à x

2/1/19

12

Analyzing Algorithm’s Correctness
• Lemma. Let G be a connected graph, and let L0, …,

Lk be the layers produced by BFS starting at node s.
Exactly one of the following holds:
Ø (ii) An edge of G joins two nodes of the same layer à

G contains an odd-length cycle and hence is not bipartite

Feb 1, 2019 CSCI211 - Sprenkle 23

• Pf. (ii)
Ø Suppose (x, y) is an edge with x, y in same level

Lj.
Ø Let z = lca(x, y)=lowest common ancestor
Ø Let Li be level containing z
Ø Consider cycle that takes edge from x to y,

then path y à z, then path z à x
Ø Its length is 1 + (j-i) + (j-i), which is odd

(x, y) path from
y to z

path from
z to x

z = lca(x, y)

An Obstruction to Bipartiteness
• Corollary. A graph G is bipartite iff it contains no

odd length cycle.

Feb 1, 2019 CSCI211 - Sprenkle 24

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

2/1/19

13

Graph Summary So Far
• What do we know about graphs?

Feb 1, 2019 CSCI211 - Sprenkle 25

Graph Summary So Far
• What do we know about graphs?

ØRepresentation: Adjacency List, Space O(n+m)
ØConnectivity

• BFS, DFS – O(n+m)

• Can apply BFS for Bipartite – O(n+m)

Feb 1, 2019 CSCI211 - Sprenkle 26

2/1/19

14

DIRECTED GRAPHS

Second verse, similar to the first.
But directed!

27Feb 1, 2019 CSCI211 - Sprenkle

Directed Graphs G = (V, E)
• Edge (u, v) goes from node u to node v

• Example: Web graph - hyperlink points from one
web page to another
ØDirectedness of graph is crucial
ØModern web search engines exploit hyperlink

structure to rank web pages by importance
Feb 1, 2019 CSCI211 - Sprenkle 28

2/1/19

15

Representing Directed Graphs
• For each node, keep track of

ØOut edges (where links go)
Ø In edges (from where links come in)
Ø Space required?

• Could only store out edges
Ø Figure out in edges with increased computation/time
ØUseful to have both in and out edges

Feb 1, 2019 CSCI211 - Sprenkle 29

Rock Paper Scissors Lizard Spock

Feb 1, 2019 CSCI211 - Sprenkle 30

2/1/19

16

CONNECTIVITY IN
DIRECTED GRAPHS

31Feb 1, 2019 CSCI211 - Sprenkle

Graph Search

• How does reachability change with

directed graphs?

• Example: Web crawler

1. Start from web page s.

2. Find all web pages linked from s, either directly or

indirectly.

Feb 1, 2019 CSCI211 - Sprenkle 32

1 2

54

7

3

6

1 2

54

7

3

6

2/1/19

17

Graph Search
• Directed reachability. Given a node s, find all

nodes reachable from s.
• Directed s-t shortest path problem. Given two

nodes s and t, what is the length of the shortest
path between s and t?
ØNot necessarily the same as tàs shortest path

• Graph search. BFS and DFS extend naturally to
directed graphs
Ø Trace through out edges
ØRun in O(m+n) time

Feb 1, 2019 CSCI211 - Sprenkle 33

1 2

54

7

3

6

Problem
• Find all nodes with paths to s

ØRather than paths from s to other nodes

Feb 1, 2019 CSCI211 - Sprenkle 34

2/1/19

18

Problem/Solution
• Problem. Find all nodes with paths to s
• Solution. Run BFS on in edges instead of out

edges

Feb 1, 2019 CSCI211 - Sprenkle 35

