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Objectives
• Wrap up: Implementing BFS and DFS
• Graph Application: Bipartite Graphs
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Turn in your problem set

Review
• What are two ways to find a connected 

component?
ØHow are their results similar?  Different?

• What was the runtime for BFS?
• What is the runtime for DFS?

ØReview what you have so far…
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Review: Breadth-First Search
• Intuition.  Explore outward from s in all possible 

directions (edges), adding nodes one "layer" at a 
time

• Algorithm
Ø L0 = { s }
Ø L1 = all neighbors of L0

Ø L2 = all nodes that have an edge to a node in L1 and 
do not belong to L0 or L1

Ø Li+1 = all nodes that have an edge to a node in Li and 
do not belong to an earlier layer
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s L1 L2 L n-1

L0

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
For each node u Î L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

Analysis: Tighter Bound
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Because we’re going to look at each node at most once



2/1/19

3

BFS(s, G):
Discovered[v] = false, for all v
Discovered[s] = true
L[0] = {s}
layer counter i = 0
BFS tree T = {}
while L[i] != {}

L[i+1] = {}
For each node u Î L[i]

Consider each edge (u,v) incident to u
if Discovered[v] == false then

Discovered[v] = true
Add edge (u, v) to tree T
Add v to the list L[i + 1]

i+=1

Analysis: Even Tighter Bound
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SuÎV deg(u) = 2m

Implementing DFS
• Keep nodes to be processed in a stack
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DFS(s, G):
Initialize S to be a stack with one element s
Explored[v] = false, for all v
Parent[v] = 0, for all v
DFS tree T = {}
while S != {}

Take a node u from S
if Explored[u] = false

Explored[u] = true
Add edge (u, Parent[u]) to T (if u ≠ s)
for each edge (u, v) incident to u

Add v to the stack S
Parent[v] = u

6

What is the runtime?
How many times is a node added/removed from the stack?
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DFS(s, G):
Initialize S to be a stack with one element s
Explored[v] = false, for all v
Parent[v] = 0, for all v
DFS tree T = {}
while S != {}

Take a node u from S
if Explored[u] = false

Explored[u] = true
Add edge (u, Parent[u]) to T (if u ≠ s)
for each edge (u, v) incident to u

Add v to the stack S
Parent[v] = u

Analyzing DFS
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deg(u)

O(n+m)
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O(n)

A node is added/removed from the stack 2* deg(u)
All nodes are added 2m = O(m) times

Analyzing 
Finding All Connected Components
• How can we find the set of all connected 

components of the graph? 
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Claim: Running time is O(m+n)
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R* = set of connected components (a set of sets)

while there is a node that does not belong to R*

select s not in R*

R = {s}

while there is an edge (u,v) where u∈R and v∉R
add v to R

Add R to R*

But the inner loop is O(m+n)!
How can this RT be possible?
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Consider: Finding All Connected Components 
for This Graph

• What would the process look like?
• What is the runtime for the major steps?
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Set of All Connected Components
• How can we find the set of all connected 

components of the graph? 
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Where i is the subscript of the 
connected component

R* = set of connected components (a set of sets)

while there is a node that does not belong to R*

select s not in R*

R = {s}

while there is an edge (u,v) where u∈R and v∉R
add v to R

Add R to R*

Imprecision in the running time 
of inner loop:  O(m+n)

But that’s m and n of the 
connected component, 
let’s say mi and ni .
Σi O(mi+ ni) = O(m+n)
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Consider: Finding All Connected Components 
for This Graph

• Find each connected component
ØRuntime: that connected component’s nodes and 

edges
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BIPARTITE GRAPHS
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Bipartite Graphs

• Def.  An undirected graph G = (V, E) is bipartite if 

the nodes can be colored red or blue such that 

every edge has one red and one blue end

ØGenerally: vertices divided into sets X and Y

• Applications:

Ø Stable matching: 

• men = red, women = blue

Ø Scheduling:  

• machines = red, jobs = blue
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a bipartite graph

Testing Bipartiteness
• Given a graph G, is it bipartite?
• Many graph problems become:

Ø Easier if underlying graph is bipartite (e.g., matching)
Ø Tractable if underlying graph is bipartite (e.g., 

independent set)
• Before designing an algorithm, need to understand 

structure of bipartite graphs
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a bipartite 
graph G: another 

drawing of G:
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How Can We Determine if a Graph is
Bipartite?

• Given a connected graph
1. Color one node red

• Doesn’t matter which color (Why?)
ØWhat should we do next?
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Why connected?

v1

v2 v3

v6 v5 v4

v7

• How will we know when 
we’re finished?

• What does this process 
sound like?

An Obstruction to Bipartiteness
• Lemma.  If a graph G is bipartite, it cannot 

contain an odd-length cycle.

Feb 1, 2019 CSCI211 - Sprenkle 16

bipartite
(2-colorable)

not bipartite
(not 2-colorable)
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An Obstruction to Bipartiteness
• Lemma.  If a graph G is bipartite, it cannot 

contain an odd-length cycle.
• Pf.  Not possible to 2-color the odd cycle, let 

alone G.
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bipartite
(2-colorable)

not bipartite
(not 2-colorable)

If find an odd cycle, 
graph is NOT bipartite

How Can We Determine if a Graph is
Bipartite?
• Given a connected graph

ØColor one node red
• Doesn’t matter which color (Why?)

ØWhat should we do next?
• How will we know that we’re finished?
• What does this process sound like?

ØBFS: alternating colors, layers
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L1 L2 L3

How can we implement the algorithm?
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Implementing Algorithm

• Modify BFS to have a Color array

• When add v to list L[i+1]

ØColor[v] = red if i+1 is even

ØColor[v] = blue if i+1 is odd

Feb 1, 2019 CSCI211 - Sprenkle 19

L1 L2 L3

What is the running time of this algorithm?What is the running time of this algorithm? O(n+m)

Marks a change in how we think about algorithms
Starting to apply known algorithms to solve new problems

Analyzing Algorithm’s Correctness
• Lemma.  Let G be a connected graph, and let L0, …, 

Lk be the layers produced by BFS starting at node s.  
Exactly one of the following holds:
Ø (i) No edge of G joins two nodes of the same layer

• G is bipartite
Ø (ii) An edge of G joins two nodes of the same layer

• G contains an odd-length cycle and hence is not bipartite
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Case (i):

L1 L2 L3

Case (ii):

L1 L2 L3
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Analyzing Algorithm’s Correctness

• Lemma.  Let G be a connected graph, and let L0, …, 
Lk be the layers produced by BFS starting at node s.  
Exactly one of the following holds:
Ø (i) No edge of G joins two nodes of the same layer

• G is bipartite

• Pf.  (i)
Ø Suppose no edge joins two nodes in the same layer
Ø Implies all edges join nodes on adjacent level
Ø Bipartition

Øred = nodes on odd levels
Øblue = nodes on even levels

Feb 1, 2019 CSCI211 - Sprenkle 21
L1 L2 L3

Analyzing Algorithm’s Correctness
• Lemma.  Let G be a connected graph, and let L0, …, 

Lk be the layers produced by BFS starting at node s.  
Exactly one of the following holds:
Ø (ii)  An edge of G joins two nodes of the same layer à

G contains an odd-length cycle and hence is not bipartite
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z = lca(x, y)

• Pf.  (ii)
Ø Suppose (x, y) is an edge with x, y in same 

level Lj.
Ø Let z = lca(x, y) = lowest common ancestor
Ø Let Li be level containing z
Ø Consider cycle that takes edge from x to y,

then path y àz, then path from z à x
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Analyzing Algorithm’s Correctness
• Lemma.  Let G be a connected graph, and let L0, …, 

Lk be the layers produced by BFS starting at node s.  
Exactly one of the following holds:
Ø (ii)  An edge of G joins two nodes of the same layer à

G contains an odd-length cycle and hence is not bipartite

Feb 1, 2019 CSCI211 - Sprenkle 23

• Pf.  (ii)
Ø Suppose (x, y) is an edge with x, y in same level 

Lj.
Ø Let z = lca(x, y)=lowest common ancestor
Ø Let Li be level containing z
Ø Consider cycle that takes edge from x to y,

then path y à z, then path z à x
Ø Its length is  1  +   (j-i)  +  (j-i),  which is odd

(x, y) path from
y to z

path from
z to x

z = lca(x, y)

An Obstruction to Bipartiteness
• Corollary.  A graph G is bipartite iff it contains no 

odd length cycle.
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5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)
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Graph Summary So Far
• What do we know about graphs?  
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Graph Summary So Far
• What do we know about graphs?

ØRepresentation: Adjacency List, Space O(n+m)
ØConnectivity

• BFS, DFS – O(n+m)

• Can apply BFS for Bipartite – O(n+m)
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DIRECTED GRAPHS

Second verse, similar to the first.
But directed!
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Directed Graphs G = (V, E)
• Edge (u, v) goes from node u to node v

• Example: Web graph - hyperlink points from one 
web page to another
ØDirectedness of graph is crucial
ØModern web search engines exploit hyperlink 

structure to rank web pages by importance
Feb 1, 2019 CSCI211 - Sprenkle 28



2/1/19

15

Representing Directed Graphs
• For each node, keep track of

ØOut edges (where links go)
Ø In edges (from where links come in)
Ø Space required?

• Could only store out edges
Ø Figure out in edges with increased computation/time
ØUseful to have both in and out edges
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Rock Paper Scissors Lizard Spock
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CONNECTIVITY IN
DIRECTED GRAPHS
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Graph Search

• How does reachability change with 

directed graphs?

• Example: Web crawler  

1. Start from web page s.

2. Find all web pages linked from s, either directly or 

indirectly.
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Graph Search
• Directed reachability.  Given a node s, find all 

nodes reachable from s.
• Directed s-t shortest path problem.  Given two 

nodes s and t, what is the length of the shortest 
path between s and t?
ØNot necessarily the same as tàs shortest path

• Graph search.  BFS and DFS extend naturally to 
directed graphs
Ø Trace through out edges
ØRun in O(m+n) time
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Problem
• Find all nodes with paths to s

ØRather than paths from s to other nodes
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Problem/Solution
• Problem. Find all nodes with paths to s
• Solution.  Run BFS on in edges instead of out 

edges
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