
9/19/11

1

Objectives

• Object-oriented programming in Java
Ø Constructors
Ø Default constructors
Ø Garbage collection
Ø Static methods, variables
Ø Inherited methods

Sept 19, 2011 Sprenkle - CSCI209 1

Danger of a Large Library

• Lots of classes that seem like they’re what
we want but aren’t

Sept 19, 2011 Sprenkle - CSCI209 2

java.lang.reflect.Array	
javax.sql.rowset.serial.Array 	

An array (e.g., int[] array) is
not an instance of a class, so we

cannot call methods on it.

Assign 1 Discussion

• Conventions:
Ø Class names: begin with capital letter
Ø Class constants: name with all capital letters,

e.g., DIFFICULTY_SCORE
•  Identifying inefficient code:

Sept 19, 2011 Sprenkle - CSCI209 3

public static void main(String[] args) {	
	// handle command-line args	
	// …	

	
	String aString = args[0] ;	
	StringBuffer str = new StringBuffer(args[0]) ;	
	System.out.println(str + " backwards is " +  
	 		str.reverse());	

}	
Sept 19, 2011 Sprenkle - CSCI209 4

Review

• Why OO programming?
Ø What are its components?

• What’s wrong with “white-box”
programming?

• What is the syntax for defining a constructor?
• What is the syntax for defining a method?

• How object does something doesn’t matter
• What object does matters (its functionality)

Ø What object exposes to other objects
Ø Referred to as “black-box programming” or

encapsulation

Object	

Sept 19, 2011 Sprenkle - CSCI209 5

Review: Objects

Object	

• Has public interface that
others can use	

• Hides state from others	

• Can see and manipulate
object’s internals	

Sept 19, 2011 Sprenkle - CSCI209 6 6

More on Constructors

• A class can have more than one constructor
Ø Whoa! Let that sink in for a bit

• A constructor can have zero, one, or multiple
parameters

• A constructor has no return value
• A constructor is always called with the new

operator

9/19/11

2

Sept 19, 2011 Sprenkle - CSCI209 7

Constructor Overloading
• Allowing > 1 constructor (or any method) with

the same name is called overloading
Ø Constraint: Each method that has the same

name must have different parameters
•  “different” à Number and/or type

• Compiler handles overload resolution
Ø Process of matching a method call to the correct

method by matching the parameters
• No function overloading in Python

7 overload.py	

Why isn’t overloading possible in Python?	

Default Initialization

•  If instance field is not explicitly set in
constructor, automatically set to default value
Ø Numbers set to zero
Ø Booleans set to false
Ø Object variables set to null	
Ø Local variables are not assigned defaults

• Do not rely on defaults
Ø Code is harder to understand

Sept 19, 2011 Sprenkle - CSCI209 8 8

Clean Code Recommendation:	

Set all instance fields in the constructor(s)	

Sept 19, 2011 Sprenkle - CSCI209 9

Explicit Field Initialization

•  If more than one constructor needs an
instance field set to same value, the field can
be set explicitly in the field declaration

class Chicken {	
	private String name = "";	
	. . .	

}	

Set value here for
all constructors	

Sept 19, 2011 Sprenkle - CSCI209 10

Explicit Field Initialization

• Or in a static method call
class Employee {	

	private int id = assignID();	
	. . .	
	private static int assignID() {	
	 	…	
	}	

}	

More on static later…	

Sept 19, 2011 Sprenkle - CSCI209 11 Sprenkle - CS209 11

Explicit Field Initialization

• Explicit field initialization happens before any
constructor runs

• A constructor can change an instance field
that was set explicitly

•  If the constructor does not set the field
explicitly, explicit field initialization is used
class Chicken {	

	private String name = "";	
	public Chicken(String name, …) {	
	 	this.name = name;	
	 	…	
	}	

…	

Change explicit
field initialization	

Sept 19, 2011 Sprenkle - CSCI209 12 12

final keyword

• An instance field can be final
• final instance fields must be set in the

constructor or in the field declaration
Ø Cannot be changed after object is constructed

private final String dbname = "invoices";	
private final String id;	
…	
public MyObject(String id) {	

	this.id = id;	
}

9/19/11

3

Sept 19, 2011 Sprenkle - CSCI209 13 13

Default Constructor

• Default constructor: constructor with no
parameters

•  If class has no constructors
Ø Compiler provides a default constructor

•  Sets all instance fields to their default values

•  If a class has at least one constructor and no
default constructor
Ø Default constructor is NOT provided

Sept 19, 2011 Sprenkle - CSCI209 14

Default Constructor

• Chicken class has one constructor:
	Chicken(String name, int height, double weight)	
➠ No default constructor

Chicken chicken = new Chicken();	
•  Is a compiler error

Sept 19, 2011 Sprenkle - CSCI209 15 15

Constructors Calling Constructors

• Can call a constructor from inside another
constructor

• The first statement of constructor must be
 this(. . .);	
 to call another constructor of the same class
Ø this refers to the object being constructed

Why would you want to call another constructor?	

Sept 19, 2011 Sprenkle - CSCI209 16 Sprenkle - CS209 16

Constructors Calling Constructors

• Why would you call another constructor?
Ø Reduce code size/reduce duplicate code

• Ex: if name not provided, use default name

• Another example

Chicken(int height, double weight) {	
	this(“Bubba”, height, weight);	

}	

Chicken(int height, double weight) {	
	this();	
	this.height = height;	
	this.weight = weight;	

}	

Not in example
code online 	

Parent Class: Object	
• Every new class you create automatically

inherits from the Object class
Ø See Java API

• Useful methods to customize your class
Ø String toString()	

•  Returns a string representation of the object
•  Like Python’s __str__	

Ø boolean equals(Object o)	
•  Return true iff this object and o are equivalent
•  Like Python’s __eq__ or __cmp__	

Ø void finalize()	
•  Called when object is destroyed
•  Clean up resources

Sept 19, 2011 Sprenkle - CSCI209 17

Method signature	

More on toString()	
• Automatically called when object is passed to

print methods
• Default implementation: Class name followed

by @ followed by unsigned hexidecimal
representation of hashcode
Ø Example: Chicken@163b91	

• General contract: “A concise but informative
representation that is easy for a person to
read”

• Your responsibility: Document the format

Sept 19, 2011 Sprenkle - CSCI209 18

9/19/11

4

Examples: Chicken.java	
• What would be a good string representation

of a Chicken object?
Ø Look at output before and after toString

method implemented
• How would we know if two Chickens are

equivalent?

Sept 19, 2011 Sprenkle - CSCI209 19

GARBAGE COLLECTION

Sept 19, 2011 Sprenkle - CSCI209 20

Sept 19, 2011 Sprenkle - CSCI209 21

Memory Management

•  In C++ and some other OOP languages,
classes have explicit destructor methods that
run when an object is no longer used

• Java does not support destructors because it
provides automatic garbage collection
Ø Waits until there are no references to an object
Ø Reclaims memory allocated for the object that is

no longer referenced

Do you know what Python does?	

Sept 19, 2011 Sprenkle - CSCI209 22

Garbage Collector

• Garbage collector is low-priority thread
Ø Or runs when available memory gets tight

• Before GC can clean up an object, the object
may have opened resources
Ø Ex: generated temp files or open network

connections that should be deleted/closed first
• GC calls object’s finalize() method

Ø Object’s chance to clean up resources

Discussion: Benefits and costs of garbage collection?

Garbage Collection

Benefits
•  Fewer memory leaks

Ø  Less buggy code
Ø  But, memory leaks are still

possible

•  Code is easier to write

Costs
•  Garbage collection may

not be as efficient as
explicit freeing memory

Sept 19, 2011 Sprenkle - CSCI209 23 Sept 19, 2011 Sprenkle - CSCI209 24

finalize()	
•  Inherited from java.lang.Object	
•  Called before garbage collector sweeps away an

object and reclaims its memory
•  Should not be used for reclaiming resources

Ø  i.e., close resources as soon as possible
Ø Why?

•  When method is called is not deterministic or consistent
•  Only know it will run sometime before garbage collection

•  Clean up anything that cannot be atomically cleaned
up by the garbage collector
Ø Close file handles, network connections, database

connections, etc.
•  Note: no finalizer chaining

Ø Must explicitly call parent object’s finalize method

9/19/11

5

Alternatives to finalize	
• Recall: unknown when finalize will

execute—or if it will execute
Ø Also heavy performance cost

• Solution: create your own terminating method
Ø User of class terminates when done using object

• Examples: File’s or Window’s close
method

• May still want a finalize method as a safety
net if user didn’t call the terminate method
Ø Log a warning message so user knows error in

code
Sept 19, 2011 Sprenkle - CSCI209 25

STATIC METHODS AND
FIELDS

Sept 19, 2011 Sprenkle - CSCI209 26

Sept 19, 2011 Sprenkle - CSCI209 27

Static Methods/Fields

• For related functionality/data that isn’t specific
to any particular object

• java.lang.Math	
Ø No constructor (what does that mean?)
Ø Static fields: PI, E
Ø Static methods:
• static double sin(double a) 	

Sept 19, 2011 Sprenkle - CSCI209 28

Static Methods

• Do not operate on objects
• Cannot access instance fields of their class
• Can access static fields of their class

• Similar to Python functions that are
associated with the class

Sept 19, 2011 Sprenkle - CSCI209 29

Static Fields

• A static field is used when only one such field
per class (not object!)

• All objects of a class share one copy of the
static field

Sept 19, 2011 Sprenkle - CSCI209 30

Constant Static Fields
• We used a static field to designate a class

constant:

• The Math class has a static constant, PI	
Ø Value can be accessed using the Math class:

 area = Math.PI * r * r;	
• Do not need an object of the Math class to

use this constant

public class Converter {	
	public static final double CM2IN = 2.54;	

9/19/11

6

Sept 19, 2011 Sprenkle - CSCI209 31

Static Fields Example

• Each Student object has an id field, but
there is only one nextID field, shared
among all instances of the class
Ø nextID field exists even when no Student

objects have been constructed

How could we use the nextID field to create unique IDs?	

public class Student {	
	private static int nextID = 1;	
	private int id;	
	. . . 	

}	

Static Field Example

Sept 19, 2011 Sprenkle - CSCI209 32

public class Student {	
	private static int nextID = 1;	
	private int id = assignID();	

	
	private static int assignID() {	
	 	int r = nextID;	
	 	nextID++;	
	 	return r;	
	}	

…	

Sept 19, 2011 Sprenkle - CSCI209 33

main()	
• Most common static method
•  main() does not operate on any objects

Ø Runs when a program starts…there are no
objects yet

•  main() executes and constructs the objects
the program needs and will use
Ø Like the driver function for the program

Sept 19, 2011 Sprenkle - CSCI209 34

Analyzing java.lang.String	
• String toUpperCase() 	

Ø Converts all of the characters in this String to
upper case

• static String valueOf(boolean b)	
Ø Returns the string representation of the boolean

argument

Why can the second method be static?	

Sept 19, 2011 Sprenkle - CSCI209 35

Static Summary

• Static fields and methods are part of a class
and not an object
Ø Do not require an object of their class to be

created in order to use them
• When would we make a method static?

Ø When a method does not have to access an
object’s state (fields) because all needed data
are passed into the method

Ø When a method only needs to access static
fields in the class

Sept 19, 2011 Sprenkle - CSCI209 36

Review: Class Design/Organization
• Fields

Ø Chosen first
Ø Placed at the beginning or end of class definition
Ø Have an access modifier, data type, variable

name, and some optional other modifiers
•  If no access modifier, defaults to package-private

Ø Use this keyword to access the object
• Constructors
• Methods

Ø Need to declare the return type
Ø Have an access modifier (defaults to package-

private if none specified)	

9/19/11

7

TO DO

• Assignment 3
Ø Static method practice
Ø Modifying the Birthday class
• toString, equals

Ø Using Birthday class to show probability of two
people having same birthday

• Extra Credit:
Ø Answer questions on Sakai about Sylvia Earle’s

talk

Sept 19, 2011 Sprenkle - CSCI209 37

