
10/24/11

1

Objectives

•  Coverage tools
•  Object-oriented Design Principles

Ø Design in the Small
Ø DRY
Ø Single responsibility principle
Ø Shy
Ø Open-closed principle

Oct 24, 2011 Sprenkle - CSCI209 1

Project 1 Questions?

•  Any suggestions of strategy of what works?

Oct 24, 2011 Sprenkle - CSCI209 2

Project 1 Notes

•  Test-driven development
Ø Incomplete comments, pre-/post conditions
Ø Make reasonable assumptions

•  Document assumptions in your test code
Ø Write specification that code has to pass

•  Systematically develop tests

Oct 24, 2011 Sprenkle - CSCI209 3

Project 1 Notes

•  Independent test cases
Ø Each tests different functionality
Ø Should only have one failure

•  Easier to locate the bug

•  Handling error cases
Ø Sometimes an exception is the expected result

Oct 24, 2011 Sprenkle - CSCI209 4

@Test(expected=IndexOutOfBoundsException.class)	
public void testIndexOutOfBoundsException() {	
 ArrayList emptyList = new ArrayList();	
 Object o = emptyList.get(0);	
}	

Add an “expected” attribute:

Project 1 Notes

•  Do not change the Car class’s API or its
package
Ø Otherwise, won’t work with my Car class

•  May want to write code for Car class to help
you figure out tests

Oct 24, 2011 Sprenkle - CSCI209 5

Project 1 Strategies

•  Organizing tests
Ø Can have multiple test classes
Ø Separate classes by

•  Functionality
•  Fixtures: Preconditions/Object state

Ø Same (small) set up required—object(s) in certain
states

•  All pass/All Errors

•  Name tests clearly and consistently
Ø Example: functionality_state_expectedresult

Oct 24, 2011 Sprenkle - CSCI209 6

10/24/11

2

Review

•  How do we know when we’ve tested
enough?

•  How can we use coverage criteria?

Oct 24, 2011 Sprenkle - CSCI209 7

True/False Quiz

•  A program that passes all test cases in a test
suite with 100% path coverage is bug-free.
Ø False.
Ø Examples:

•  The test suite may cover a faulty path with data
values that don’t expose the fault.
Ø Towards Exhaustive Testing

•  Errors of omission
Ø Missing a whole if

Oct 24, 2011 Sprenkle - CSCI209 8

Oct 24, 2011 Sprenkle - CSCI209

Example exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a += 2; a -= 10;

if(a > 10)

b *= 2; b /= a;

Test Suite:
 3-7: a=3
 4-6: a=30
 3-6: a=6
 4-7: a=9

But, error shows up with

 3-7: a=0
 4-7: a=10

1

true

true

false

false

2

3 4

5

6 7

8 Could divide	

by 0	

9

Error of Omission

Oct 24, 2011 Sprenkle - CSCI209 10

int gcd(int x, int y)

while(x > 0 && y > 0)

if(x > y)

x -= y; y -= x;

return x+y;

true

false 1

2

3 4

5

6

false true

•  Should verify that
x and y are not
negative numbers

•  Can’t cover that code

True/False Quiz

• When you add test cases to a test suite that
covers all statements so that it covers all
branches, the new test suite is more likely to
be better at exposing faults.
Ø True.
Ø You’re adding test cases and covering new

paths, which may have faults.

Oct 24, 2011 Sprenkle - CSCI209 11 Oct 24, 2011 Sprenkle - CSCI209

Which Test Suite Is Better?

12

Statement-
adequate	

Test Suite	

Branch-
adequate	

Test Suite	

•  Branch-adequate suite is not necessarily
better than Statement-adequate suite
Ø Statement-adequate suite could cover buggy

paths and include input value tests that Branch-
adequate suite doesn’t

10/24/11

3

Example

•  TS1 (Statement-
Adequate):
Ø a=0, 6

•  TS2 (Branch-Adequate):
Ø a=3, 30

•  Statement-adequate will
find fault but branch-
adequate won’t
Ø Covers the path that

exposes the fault
Oct 24, 2011 Sprenkle - CSCI209 13

exampleMethod(int a)

int b=60;

if(a < 7)

return b;

a *= 2;

if(a > 10)

b *= 2; b /= a;

Software Testing: When is Enough
Enough?
•  Need to decide when tested enough

Ø Balance goals of releasing application, high quality
standards

•  Can use program coverage as “stopping” rule
Ø Also measure of confidence in test suite
Ø Statement, Branch, Path and their tradeoffs
Ø Use coverage tools to measure statement, branch

coverage
•  Still, need to use some other “smarts” besides

program coverage for creating test cases

Oct 24, 2011 Sprenkle - CSCI209 14

COVERAGE TOOLS

Oct 24, 2011 Sprenkle - CSCI209 15

Coverage Tools

•  Coverage is used in practice
•  Don’t need to figure out coverage manually
•  Available tools to calculate coverage

Ø Examples for Java programs: Clover,
JCoverage, Emma

Ø Measure statement, branch/conditional, method
coverage

Oct 24, 2011 Sprenkle - CSCI209 16

Eclipse Plugin: EclEmma for Coverage

•  Eclipse can be extended through plugins
Ø Provide additional functionality

•  EclEmma Plugin
Ø Records executing program’s (or JUnit test

case’s) coverage
Ø Displays coverage graphically

Oct 24, 2011 Sprenkle - CSCI209 17

Demonstration

•  Execute MediaItemTest with Coverage

Oct 24, 2011 Sprenkle - CSCI209 18

10/24/11

4

Installing Emma in Eclipse

•  Under Help à Install New Software	
• Add… a new remote site	

Ø Name: EclEmma	
Ø URL: http://update.eclemma.org/	

•  Select to install Emma
Ø Go through process

•  Restart Eclipse

Oct 24, 2011 Sprenkle - CSCI209 19

OBJECT-ORIENTED DESIGN
PRINCIPLES

Oct 24, 2011 Sprenkle - CSCI209 20

Inspiration

•  It is tomorrow!

Oct 24, 2011 Sprenkle - CSCI209 21

“Fifteen years ago companies competed on
price. Now it’s quality. Tomorrow it’s design.”	

Robert Hayes, Professor of Business Administration, ���
Harvard Business School, 2005	

Designing Systems

Ø Requirements change
Ø Misunderstandings in requirements

•  Code must be soft
Ø Flexible
Ø Easy to change

•  New or revised circumstances
•  New contexts

Oct 24, 2011 Sprenkle - CSCI209 22

All systems change ���
during their life cycle	

Designing Systems

•  Questions to consider:
Ø How can we create designs that are stable in the

face of change?
Ø How do we know if our designs aren’t

maintainable?
Ø What can we do if our code isn’t maintainable?

•  Answers will help us
Ø Design our own code
Ø Understand others’ code

Oct 24, 2011 Sprenkle - CSCI209 23

All systems change during their life cycle	

Designing for Change Example
•  July 2010, Oracle released Java 6 update 21

Ø Generated java.dll replaced
COMPANY_NAME=Sun Microsystems, Inc. with
COMPANY_NAME=Oracle Corporation

•  Change caused OutOfMemoryError
during Eclipse launch
Ø Eclipse versions 3.3-3.6 (widespread!)
Ø Why? Eclipse uses the name in the DLL in

startup (runtime parameters) on Windows
•  Temporary Fix: Oracle changed name back
•  Requires changes to all Eclipse versions

Oct 24, 2011 Sprenkle - CSCI209 24 Source: http://www.infoq.com/news/2010/07/eclipse-java-6u21	

10/24/11

5

Best Practices

•  (DRY): Don’t repeat yourself
•  Single Responsibility Principle
•  Shy

Ø Avoid Coupling
•  Tell, Don’t Ask
•  Open-closed principle
•  Avoid code smells

Oct 24, 2011 Sprenkle - CSCI209 25

A lot of similar, related fundamental principles	

Don’t Repeat Yourself (DRY):
 Knowledge Representation

•  Intuition: when need to change
representation, make in only one place

•  Requires planning

Ø What data needed, how represented (e.g., type)
Oct 24, 2011 Sprenkle - CSCI209 26

Every piece of knowledge must have a single,
unambiguous, and authoritative representation

within a system	

Single Responsibility Principle

•  Intuition:

Ø Each responsibility is an axis of change
•  More than one reason to change

Ø Responsibilities become coupled
•  Changing one may affect the other
•  Code breaks in unexpected ways

Oct 24, 2011 Sprenkle - CSCI209 27

There should never be more than ���
one reason for a class to change	

Example

•  Reasonable interface
•  But has two responsibilities

Ø Can you group the functionality into two
responsibilities?

•  Check:
Ø Change for different reasons? Called from different

parts of program?
Oct 24, 2011 Sprenkle - CSCI209 28

interface Network {	
	public void connect();	
	public void disconnect();	
	public void send(String s);	
	public String receive(); 	

}	

Shy Code

• Won’t reveal too much of itself
•  Otherwise: get coupling

Ø Static, dynamic, domain, temporal

•  Coupling isn’t always bad…

Oct 24, 2011 Sprenkle - CSCI209 29

What techniques have we discussed
for how to keep our code shy?	

Achieving Shy Code

•  Private instance variables
Ø Especially mutable fields

•  Make classes public only when need to be
public
Ø i.e., accessible by other classesà part of API

•  Getter methods shouldn’t return private,
mutable state/objects
Ø Use clone() before returning

Oct 24, 2011 Sprenkle - CSCI209 30

How can you make any
field immutable? 	

10/24/11

6

Tell, Don’t Ask

•  Think of methods as “sending a message”
•  Method call: sends a request to do

something
Ø Don’t ask about details
Ø Black-box, encapsulation, information hiding

Oct 24, 2011 Sprenkle - CSCI209 31

Static Coupling

•  Description: Code requires other code to
compile

•  Problem if you drag in more than you need
Ø Example: poor use of inheritance

•  Brings excess baggage
•  Inheritance is reserved for “is-a” relationships

Ø Base class should not include optional behavior
Ø Not “uses-a” or “has-a”

•  Solution: use composition or delegation
instead

Oct 24, 2011 Sprenkle - CSCI209 32

Dynamic Coupling

•  Description: Code uses other code at runtime
Ø getOrder().getCustomer().  
getAddress().getState()	

• Why a problem: Relies on several objects/
classes and their state
Ø If others change, my code has to change

•  Solution: Talk directly to code

Oct 24, 2011 Sprenkle - CSCI209 33

Domain Coupling

•  Description: Business rules, policies are
embedded in code

• Why a problem: if change frequently, code
has to change frequently

•  Solution: put into another place (metadata)
Ø Database, property file
Ø Process the rules

Oct 24, 2011 Sprenkle - CSCI209 34

Temporal Coupling

•  Description: Dependencies on time
Ø Order that things occur
Ø Occur at a certain time
Ø Occur by a certain time
Ø Occur at the same time

•  Solution: Write concurrent code

Oct 24, 2011 Sprenkle - CSCI209 35

Open-Closed Principle
•  Bertrand Meyer

Ø Author of Object-Oriented Software Construction
•  Foundational text of OO programming

•  Design modules that never change after
completely implemented

•  If requirements change, extend behavior by
adding code
Ø Don’t change existing code à won’t create bugs!

Oct 24, 2011 Sprenkle - CSCI209 36

Principle: Software entities (classes, modules,
methods, etc.) should be open for extension

but closed for modification	

10/24/11

7

Attributes of Software that Adhere to OCP

•  Open for Extension
Ø Behavior of module can be extended
Ø Make module behave in new and different ways

•  Closed for Modification
Ø No one can make changes to module

Oct 24, 2011 Sprenkle - CSCI209 37

These attributes seem to be at odds with each other.	

How can we resolve them?	

Using Abstraction

•  Abstract base classes or interfaces
Ø Fixed abstraction à API
Ø Cannot be changed

•  Derived classes: possible behaviors
Ø Can always create new child classes of abstract

base class

Oct 24, 2011 Sprenkle - CSCI209 38

TODO

•  Project 1: Due Friday
•  Extra credit opportunities

Oct 24, 2011 Sprenkle - CSCI209 39

