
10/28/09

1

•  Coverage tools
•  Object-oriented Design Principles

 Design in the Small

•  Test-driven development
 Incomplete comments, pre-/post conditions
 Make reasonable assumptions

•  Document assumptions in your test code
 Write the specification that code has to pass

•  Organizing tests
 Can have multiple test classes

•  Organize by fixture, functionality, all pass, all
errors

•  Independent test cases
 Each tests different functionality
 Should only have one failure

•  Easier to locate the bug

•  Handling error cases
 Sometimes an exception is the expected result

@Test(expected=IndexOutOfBoundsException.class)	
public void testIndexOutOfBoundsException() {	
 ArrayList emptyList = new ArrayList();	
 Object o = emptyList.get(0);	
}	

Add an “expected” attribute:

•  Do not change the Car class’s API or it’s
package
 Otherwise, won’t work with my Car class

•  May want to write code for Car class to help
you figure out tests

•  How do we know when we’ve tested
enough?

•  How can we use coverage criteria?
• Why is coverage not enough?

 What can we do to improve testing?

10/28/09

2

Goal:	
 Expose	
 all	
 the	
 “scarecrows”	

http://i.imgur.com/prFIq.jpg	

•  Coverage is used in practice
•  You don’t need to figure out coverage

manually
•  Available tools to calculate coverage

 Examples for Java programs: Clover,
JCoverage, Emma

 Measure statement, branch/conditional, method
coverage

•  Eclipse can be extended through plugins
 Provide additional functionality

•  EclEmma Plugin
 Records executing program’s (or JUnit test

case’s) coverage
 Displays coverage graphically

•  Execute MediaItemTest with Coverage •  Under Help  Install New Software	
• Add… a new remote site	

 Name: EclEmma
 URL: http://update.eclemma.org/

•  Select to install Emma
 Go through process

•  Restart Eclipse

10/28/09

3

public class Bigram {	

	private final char first;	
	private final char second;	

	public Bigram(char first, char second) {	
	 	this.first = first;	
	 	this.second = second;	
	}	

	public boolean equals(Bigram b) {	
	 	return b.first == first && b.second == second;	
	}	

	public static void main(String[] args) {	
	 	Set<Bigram> s = new HashSet<Bigram>();	
	 	for(int i=0; i < 10; i++) 	
	 	 	for(char ch='a'; ch <= 'z'; ch++) 	
	 	 	 	s.add(new Bigram(ch, ch));	
	 	System.out.println(s.size());	
	}	

}	

What’s the bug?

public boolean equals(Bigram b) {	
	return b.first == first && b.second == second;	

}	

Set is calling equals(Object o) when it adds an
element

What method did we define?

We overloaded the equals method.

@Override	
public boolean equals(Bigram b) {	

	return b.first == first && b.second == second;	
}	

Compiler tells us there is a problem.

How do we fix?

•  All systems change during their life cycle
 Changes in requirements
 Misunderstandings in requirements

•  Code must be soft
 Flexible
 Easy to change

•  New or revised circumstances
•  New contexts

10/28/09

4

•  All systems change during their life cycle
•  Questions to consider:

 How can we create designs that are stable in the
face of change?

 How do we know if our designs aren’t
maintainable?

 What can we do if our code isn’t maintainable?
•  Answers will help us

 Design our own code
 Understand others’ code

•  (DRY): Don’t repeat yourself
•  Single Responsibility Principle
•  Shy

 Avoid Coupling
•  Tell, Don’t Ask
•  Open-closed principle
•  Avoid code smells

A lot of similar, related fundamental principles

•  Intuition: when need to change code, make
in only one place

•  Requires planning
 What data needed, how represented (e.g., type)

Every piece of knowledge must have a
single, unambiguous, and authoritative

representation within a system

•  Intuition:
 Each responsibility is an axis of change

•  More than one reason to change
 Responsibilities become coupled

•  Changing one may affect the other
•  Code breaks in unexpected ways

There should never be more than one
reason for a class to change

•  Reasonable interface
•  But has two responsibilities

 Can you group the functionality into two
responsibilities?

•  Check:
 Change for different reasons? Called from different

parts of program?

interface Network {	
	public void connect();	
	public void disconnect();	
	public void send(String s);	
	public String receive(); 	

}	

• Won’t reveal too much of itself
•  Otherwise: get coupling

 Static, dynamic, domain, temporal

•  Coupling isn’t always bad…

10/28/09

5

• What techniques have we discussed about
how to keep our code shy?

•  Private instance variables
 Especially mutable fields

•  Make classes public only when need to be
public
 i.e., accessible by other classes part of API

•  Getter methods shouldn’t return private,
mutable state/objects
 Use clone() before returning

How can you make any field immutable?

•  Think of methods as “sending a message”
 Method call: sends a request to do something

•  Don’t ask about details
•  Black-box, encapsulation, information hiding

 Return: answer

•  Code requires other code to compile
 Not really a bad thing
 BUT don’t drag in more than you need

•  Example: poor use of inheritance
 Brings excess baggage
 Inheritance is reserved for “is-a” relationships

•  Base class should not include optional behavior
•  Not “uses-a” or “has-a”

 Want composition or delegation instead

•  Code uses other code at runtime
 getOrder().getCustomer().getAddress
().getState()	

 Relies on several objects/classes and their state
•  Talk directly to code

•  Business rules, policies are embedded in
code
 Problem if change frequently
 Code will have to change frequently

•  Put into another place (metadata)
 Database, property file
 Process the rules

10/28/09

6

•  Dependencies on time
 Order that things occur
 Occur at a certain time
 Occur by a certain time
 Occur at the same time

➥ Write concurrent code

