Objectives

Coverage tools
Object-oriented Design Principles
» Design in the Small
»DRY
» Single responsibility principle
» Shy
» Open-closed principle

Sprenkle - CSCI209

Oct 24, 2011

Project 1 Questions?

Any suggestions of strategy of what works?

Oct 24, 2011 Sprenkle - CSCI209

Project 1 Notes

Test-driven development
» Incomplete comments, pre-/post conditions
» Make reasonable assumptions
Document assumptions in your test code
» Write specification that code has to pass

Systematically develop tests

Oct 24, 2011 Sprenkle - CSCI209

Project 1 Notes

Independent test cases
» Each tests different functionality
» Should only have one failure
Easier to locate the bug

Handling error cases
» Sometimes an exception is the expected result
Add an “expected” attribute:
@Test(expected=IndexOutOfBoundsException.class)
public void testIndexOutOfBoundsException() {
ArraylList emptylist = new ArraylList();
Object o = emptylList.get(0);

Oct 24,2011 Sprenkle - CSCI209

Project 1 Notes

Do not change the Car class’s API or its
package
» Otherwise, won’t work with my Car class

May want to write code for Car class to help
you figure out tests

Oct 24, 2011 Sprenkle - CSCI209

Project 1 Strategies

Organizing tests
» Can have multiple test classes
» Separate classes by
Functionality
Fixtures: Preconditions/Object state
» Same (small) set up required—obiject(s) in certain
states
All pass/All Errors
Name tests clearly and consistently
» Example: functionality_state_expectedresult

Oct 24, 2011 Sprenkle - CSCI209




Review

How do we know when we’ve tested
enough?
How can we use coverage criteria?

True/False Quiz

A program that passes all test cases in a test
suite with 100% path coverage is bug-free.
False.
Examples:

The test suite may cover a faulty path with data
values that don’t expose the fault.

» Towards Exhaustive Testing
Errors of omission
» Missing a whole if

Oct 24, 2011 Sprenkle - CSCI209 8

Oct 24, 2011 Sprenkle - CSCI209 7
exampleMethod(int a
Example et
int b=60;

Test Suite: ! I
3.7:3=3 iflta<7)

) t fal
4-6: a=30 3 We 4
3-6: a=6 a+=2; a-=10;
4-7:2=9 o~

ifta>10)

But, error shows up with ¢ tr‘V\false ;
3-7:a=0 b *= 2: b/=a;
4-7:2=10 S T aaavee

N‘/ cor oy ©
return b;
Oct 24, 2011 Sprenkle - CSCI209 9

Error of Omission ol i)

_ 1
Should verify that . iecxs oaay s 0) —=°

X and_y are not true
negative numbers 2
Can’t cover that code if(x>y)
X-=y; y-=X;
5
6
return x+y; +——
Oct 24, 2011 Sprenkle - CSCI209 10

True/False Quiz

When you add test cases to a test suite that
covers all statements so that it covers all
branches, the new test suite is more likely to
be better at exposing faults.

True.

You're adding test cases and covering new
paths, which may have faults.

Oct 24, 2011 Sprenkle - CSCI209 "

Which Test Suite Is Better?

Branch-adequate suite is not necessarily
better than Statement-adequate suite

Statement-adequate suite could cover buggy
paths and include input value tests that Branch-
adequate suite doesn’t

Oct 24, 2011 Sprenkle - CSCI209 12




Exam ple exampleMethod(int a)
TS1 (Statement- int b1=60;
Adeqoue:;te): i

» a=u,

TS2 (Branch-Adequate):
»a=3, 30

Statement-adequate will if(a>10)
find fault but branch-
adequate won'’t b*=2; b/=a;

» Covers the path that \ /

exposes the fault v

Oct 24, 2011 Sprenkle - CSCI209 13

Software Testing: When is Enough
Enough?
Need to decide when tested enough
~ Balance goals of releasing application, high quality
standards
Can use program coverage as “stopping” rule
~ Also measure of confidence in test suite
» Statement, Branch, Path and their tradeoffs
» Use coverage tools to measure statement, branch
coverage
Still, need to use some other “smarts” besides
program coverage for creating test cases

Oct 24, 2011 Sprenkle - CSCI209 14

COVERAGE TOOLS

Oct 24, 2011 Sprenkle - CSCI209 15

Coverage Tools

Coverage is used in practice
Don’t need to figure out coverage manually

Available tools to calculate coverage

» Examples for Java programs: Clover,
JCoverage, Emma

» Measure statement, branch/conditional, method
coverage

Oct 24, 2011 Sprenkle - CSCI209 16

Eclipse Plugin: EcCIEmma for Coverage

Eclipse can be extended through plugins
» Provide additional functionality

EclEmma Plugin

» Records executing program’s (or JUnit test
case’s) coverage

» Displays coverage graphically

Oct 24, 2011 Sprenkle - CSCI209 17

Demonstration ‘n~

Execute MedialtemTest with Coverage

Oct 24, 2011 Sprenkle - CSCI209 18




Installing Emma in Eclipse

Under Help - Install New Software
Add... a new remote site

> Name: ECLEmma

> URL: http://update.eclemma.org/

Select to install Emma
» Go through process
Restart Eclipse

Oct 24, 2011 Sprenkle - CSCI209 19

OBJECT-ORIENTED DESIGN
PRINCIPLES

Oct 24, 2011 Sprenkle - CSCI209 20

Inspiration

“Fifteen years ago companies competed on

price. Now it’s quality. Tomorrow it’s design.”
Robert Hayes, Professor of Business Administration,
Harvard Business School, 2005

It is tomorrow!

Oct 24, 2011 Sprenkle - CSCI209 21

Designing Systems

» Requirements change
» Misunderstandings in requirements
Code must be soft
» Flexible
» Easy to change
New or revised circumstances
New contexts

Oct 24, 2011 Sprenkle - CSCI209 22

Designing Systems

Questions to consider:

» How can we create designs that are stable in the
face of change?

» How do we know if our designs aren’t
maintainable?

» What can we do if our code isn’t maintainable?
Answers will help us

» Design our own code

» Understand others’ code

Oct 24, 2011 Sprenkle - CSCI209 23

Designing for Change Example

July 2010, Oracle released Java 6 update 21

» Generated java.dll replaced
COMPANY_NAME=Sun Microsystems, Inc. with
COMPANY_NAME=0racle Corporation

Change caused OQutOfMemoryError
during Eclipse launch
» Eclipse versions 3.3-3.6 (widespread!)

» Why? Eclipse uses the name in the DLL in
startup (runtime parameters) on Windows

Temporary Fix: Oracle changed name back

Requires changes to all Eclipse versions
Source: http://www.infoq.com/news/2010/07/eclipse-java-6u2l




Best Practices

(DRY): Don’t repeat yourself
Single Responsibility Principle
Shy

Avoid Coupling
Tell, Don’t Ask
Open-closed principle
Avoid code smells

A lot of similar, related fundamental principles

Oct 24, 2011 Sprenkle - CSCI209 25

Don't Repeat Yourself (DRY):
Knowledge Representation

Every piece of knowledge must have a single,
unambiguous, and authoritative representation
within a system

Intuition: when need to change
representation, make in only one place

Requires planning
What data needed, how represented (e.g., type)

Oct 24, 2011 Sprenkle - CSCI209 26

Single Responsibility Principle

There should never be more than
one reason for a class to change

Intuition:
Each responsibility is an axis of change
More than one reason to change
Responsibilities become coupled
Changing one may affect the other
Code breaks in unexpected ways

Oct 24, 2011 Sprenkle - CSCI209 27

Example

interface Network {
public void connect();
public void disconnect();
public void send(String s);
public String receive();

3

Reasonable interface

But has two responsibilities
Can you group the functionality into two
responsibilities?

Check:
Change for different reasons? Called from different
parts of program?

Oct 24, 2011 Sprenkle - CSCI209 28

Shy Code

Won’t reveal too much of itself

Otherwise: get coupling
Static, dynamic, domain, temporal

Coupling isn’t always bad...

What techniques have we discussed
for how to keep our code shy?

Oct 24, 2011 Sprenkle - CSCI209 29

Achieving Shy Code

Private instance variables

How can you make any

Especially mutable fields T

Make classes public only when need to be
public

i.e., accessible by other classes—> part of API
Getter methods shouldn’t return private,
mutable state/objects

Use clone() before returning

Oct 24, 2011 Sprenkle - CSCI209 30




Tell, Don't Ask

Think of methods as “sending a message”
Method call: sends a request to do
something

Don’t ask about details

Black-box, encapsulation, information hiding

Oct 24, 2011 Sprenkle - CSCI209 31

Static Coupling

Description: Code requires other code to
compile
Problem if you drag in more than you need
Example: poor use of inheritance
Brings excess baggage
Inheritance is reserved for “is-a” relationships
» Base class should not include optional behavior
» Not “uses-a” or “has-a”
Solution: use composition or delegation
instead

Oct 24, 2011 Sprenkle - CSCI209 32

Dynamic Coupling

Description: Code uses other code at runtime

getOrder().getCustomer().
getAddress().getState()

Why a problem: Relies on several objects/
classes and their state
If others change, my code has to change

Solution: Talk directly to code

Oct 24, 2011 Sprenkle - CSCI209 33

Domain Coupling

Description: Business rules, policies are
embedded in code

Why a problem: if change frequently, code
has to change frequently

Solution: put into another place (metadata)
Database, property file
Process the rules

Oct 24, 2011 Sprenkle - CSCI209 34

Temporal Coupling

Description: Dependencies on time
Order that things occur
Occur at a certain time
Occur by a certain time
Occur at the same time

Solution: Write concurrent code

Oct 24, 2011 Sprenkle - CSCI209 35

Open-Closed Principle

Bertrand Meyer
Author of Object-Oriented Software Construction
Foundational text of OO programming

Principle: Software entities (classes, modules,
methods, etc.) should be open for extension
but closed for modification

Design modules that never change after
completely implemented

If requirements change, extend behavior by
adding code
Don’t change existing code > won'’t create bugs!

Oct 24, 2011 Sprenkle - CSCI209 36




Attributes of Software that Adhere to OCP

Open for Extension
» Behavior of module can be extended
» Make module behave in new and different ways

Closed for Modification
» No one can make changes to module

These attributes seem to be at odds with each other.
How can we resolve them?

Oct 24, 2011 Sprenkle - CSCI209 37

Using Abstraction

Abstract base classes or interfaces
~ Fixed abstraction > API
» Cannot be changed
Derived classes: possible behaviors
» Can always create new child classes of abstract
base class

Oct 24, 2011 Sprenkle - CSCI209

TODO

Project 1: Due Friday
Extra credit opportunities

Oct 24, 2011 Sprenkle - CSCI209

39




