
9/28/11

1

Objectives

• Exceptions
Ø Why Exceptions?
Ø Throwing exceptions
Ø Catching exceptions
Ø Generating our own exception classes

Sept 28, 2011 Sprenkle - CSCI209 1 Sept 28, 2011 Sprenkle - CSCI209 2

Review

• How do we specify that a class or a method
cannot be subclassed/overridden?

• Compare and contrast abstract classes and
interfaces

• When should a class be abstract?
• When should you create/use an interface?
• What is the keyword for defining your class to

implement an interface?

EXCEPTIONS

Sept 28, 2011 Sprenkle - CSCI209 3 Sept 28, 2011 Sprenkle - CSCI209 4

Errors

• Programs encounter errors when they run
Ø Users may enter data in the wrong form
Ø Files may not exist
Ø Program code has bugs!*

• When an error occurs, a program should do
one of two things:
Ø Revert to a stable state and continue
Ø Allow the user to save data and then exit the

program gracefully

* (Of course, not your programs)	

Sept 28, 2011 Sprenkle - CSCI209 5

Java Method Behavior

• Normal/correct case: return specified return
type

• Error case: does not return anything, throws
an Exception	
Ø An exception is an event, which occurs during

execution of a program, that disrupts normal flow
of program's instructions	

Ø Exception: object that encapsulates error
information

Similar to Python	

Sept 28, 2011 Sprenkle - CSCI209 6

Handling Exceptions
•  JVM’s exception-handling mechanism searches for

an exception handler—the error recovery code
Ø Exception handler deals with a particular exception
Ø Searches call stack for a method that can handle (or

catch) the exception

1

2

3

4

C
al

l s
ta

ck

Search order for handler	

9/28/11

2

Sept 28, 2011 Sprenkle - CSCI209 7

Throwable	
• All exceptions indirectly derive from
Throwable	
Ø Child classes: Error and Exception	

•  Important Throwable methods
Ø getMessage()	

• Detailed message about error
Ø printStackTrace()	

• Prints out where problem occurred and path to
reach that point

Ø getStackTrace()	
• Get the stack in non-text format

Error	

Throwable	

Exception	

Sept 28, 2011 Sprenkle - CSCI209 8

Printing Stack Trace Example

How helpful is this output?	

How user friendly is it?	

java.io.FileNotFoundException: fred.txt	
	at java.io.FileInputStream.<init>(FileInputStream.java)	
	at java.io.FileInputStream.<init>(FileInputStream.java)	
	at ExTest.readMyFile(ExTest.java:19)	
	at ExTest.main(ExTest.java:7)	

Printing Stack Trace Example

• Useful for debugging your code
• Generate/display user-friendly errors in finished

product
•  Often requires “higher-level code” to handle exception

Sept 28, 2011 Sprenkle - CSCI209 9

java.io.FileNotFoundException: fred.txt	
	at java.io.FileInputStream.<init>(FileInputStream.java)	
	at java.io.FileInputStream.<init>(FileInputStream.java)	
	at ExTest.readMyFile(ExTest.java:19)	
	at ExTest.main(ExTest.java:7)	

How helpful is this output?	

How user friendly is it?	

Sept 28, 2011 Sprenkle - CSCI209 10

Exception Classification: Error	
• An internal error
• Strong convention: reserved for JVM

Ø JVM-generated when resource exhaustion or an
internal problem
• Example: Out of Memory error

• Program’s code should not and can not throw
an object of this type

• Unchecked exception

When can that
happen in Java?	

Sept 28, 2011 Sprenkle - CSCI209 11

Exception Classifications

1.  RuntimeException: something that
happens because of a programming error
Ø Unchecked exception
Ø Examples: ArrayOutOfBoundsException,
NullPointerException,
ClassCastException	

2. Checked exceptions
Ø A well-written application should anticipate and

recover from
Ø Examples: IOException, SQLException	

Error	

Sept 28, 2011 Sprenkle - CSCI209 12

Exception Classification

Throwable	

Exception	

IOException	
RuntimeException	

SQLException	

Others…	

U
nch

ec
ked

	

Unchecked	

Check

ed	

Checked

Checked: All non-
RuntimeExceptions	

Part of java.lang
package

9/28/11

3

Types of Exceptions
Unchecked
•  Any exception that derives

from Error or
RuntimeException	
Ø  Programmer does not

create/handle
Ø  Try to make sure that they

don’t occur
Ø  Often indicates

programmer error
•  E.g., precondition

violations, not using API
correctly

Checked
•  Any other exception	

Ø  Programmer creates and
handles checked
exceptions

Ø  Compiler-enforced
checking
•  Improves reliability

•  For conditions from which
caller can reasonably be
expected to recover

Sept 28, 2011 Sprenkle - CSCI209 13

Types of Unchecked Exceptions

• Derived from the class Error	
Ø Any line of code can generate because it is an

internal error
Ø Don’t worry about what to do if this happens

• Derived from the class RuntimeException	
Ø Indicates a bug in the program
Ø Fix the bug
Ø Examples: ArrayOutOfBoundsException,
NullPointerException,
ClassCastException	

Sept 28, 2011 Sprenkle - CSCI209 14

Checked Exceptions

• Need to be handled by your program
Ø Compiler enforced

• Advertise the exceptions that a method
throws
Ø For each method, tell the compiler:

•  What the method returns
•  What could possibly go wrong

Ø Helps users of your interface know what method
does and lets them decide how to handle
exceptions

Sept 28, 2011 Sprenkle - CSCI209 15

Discussion: Why Checked and Unchecked
Exceptions?

• Why do we have exceptions that the compiler
doesn’t force the programmer to check?
Ø Think about examples of unchecked exceptions

and when those exceptions can occur

Sept 28, 2011 Sprenkle - CSCI209 16

THROWING EXCEPTIONS

Sept 28, 2011 Sprenkle - CSCI209 17

Methods and Exceptions Example

• BufferedReader has method readLine()
Ø Reads a line from a stream, such as a file or

network connection
• Method header:

•  Interpreting the header: readLine will
Ø return a String (if everything went right)
Ø throw an IOException (if something went

wrong)
Sept 28, 2011 Sprenkle - CSCI209 18

public String readLine() throws IOException	

Part of “Advertising”

9/28/11

4

Advertising Checked Exceptions

• Advertising: in Javadoc, document under
what conditions each exception is thrown
Ø @throws tag

• Examples of when your method should
advertise the checked exceptions that it may
throw
Ø Your method calls a method that throws a

checked exception
Ø Your method detects an error in its processing

and decides to throw an exception

Sept 28, 2011 Sprenkle - CSCI209 19 Sept 28, 2011 Sprenkle - CSCI209 20

Example: Passing an Exception “Up”

• readData() calls a method that can throw an
IOException

• readLine() will throw this exception to our method
Ø Assuming we don’t want to handle the exception, we

throw the exception as well
Ø Whoever calls readData will handle exception

public String readData(BufferedReader in)	
 throws IOException {	

	String str1;	
	str1 = in.readLine();	
	return str1;	

}	

Throws an IOException	

Sept 28, 2011 Sprenkle - CSCI209 21

Throwing An Exception We Created

1. Create a new object of class
IllegalArgumentException	
Ø Class derived from RuntimeException	

2. throw it
Ø Method ends at this point
Ø Calling method handles exception

if (month < 1 || month > 12) {	
	throw new IllegalArgumentException();	

}	

Equivalent in Python?	

Sept 28, 2011 Sprenkle - CSCI209 22

A More Descriptive Exception

• Four constructors for most Exception classes
Ø Default (no parameters)
Ø Takes a String message	

•  Describe the condition that generated this
exception more fully

Ø 2 more

Best messages include all state that
could have contributed to the problem	

if (month < 1 || month > 12) {	
	throw new IllegalArgumentException(
	 	"Month is not in valid range (1-12)");	

}	

Common Exceptions
Name Purpose
IllegalArgumentException	 When caller passes in inappropriate

argument
IllegalStateException	 Invocation is illegal because of

receiving object’s state. (Ex: closing a
closed window)

•  Both inherit from RuntimeException	
•  May seem like these cover everything but only used for

certain kinds of illegal arguments and exceptions
•  Not used when

Ø  A null argument passed in; should be a
NullPointerException

Ø  Pass in invalid index for an array; should be an
IndexOutOfBoundsException

Sept 28, 2011 Sprenkle - CSCI209 23

Factorial Alternatives

Sept 28, 2011 Sprenkle - CSCI209 24

public static double factorial(int x) {	
	if(x < 0)	
	 	return 0.0;	
	double fact = 1.0;	
	while(x > 1) {	
	 	fact *= x;	
	 	x--;	
	}	
	return fact;	

}	

9/28/11

5

Factorial Alternatives

Sept 28, 2011 Sprenkle - CSCI209 25

public static double factorial(int x) {	
	if(x < 0)	
	 	throw new IllegalArgumentException("x" +	
	 	 	 	"must be >= 0");	
	double fact = 1.0;	
	while(x > 1) {	
	 	fact *= x;	
	 	x--;	
	}	
	return fact;	

}	

What are the pros and cons of these approaches?	

IllegalArgumentException:
Thrown to indicate that a method has
been passed an illegal or inappropriate

argument	

Note, no @throws clause	

Why?	

 Rules about @throws

• Always report if throw checked exceptions
• Report any unchecked exceptions that the

caller might reasonably want to catch
Ø Exception: NullPointerException
Ø Allows caller to handle (or not)
Ø Document exceptions that are independent of the

underlying implementation
• Errors should not be documented as they are

unpredictable

Sept 28, 2011 Sprenkle - CSCI209 26

Goal: Failure Atomicity
• After an object throws an exception, the object

should be in a well-defined, usable state
Ø A failed method invocation should leave object in

state prior to invocation
• Approaches:

Ø Check parameters/state before performing operation
(s)

Ø Do the failure-prone operations first
Ø Use recovery code to “rollback” state
Ø Apply to temporary object first, then copy over values

Sept 28, 2011 Sprenkle - CSCI209 27

Practice

• How should we implement this method?
• What are some problems we could face?

Sept 28, 2011 Sprenkle - CSCI209 28

public void setBirthday(int month, int day) {	
 	
}	

CATCHING EXCEPTIONS

Sept 30, 2011 Sprenkle - CSCI209 29

Error	

Sept 28, 2011 Sprenkle - CSCI209 30

Exception Classification

Throwable	

Exception	

IOException	
RuntimeException	

SQLException	

Others…	

U
nch

ec
ked

	

Unchecked	

Check

ed	

Checked

Checked: All non-
RuntimeExceptions	

Part of java.lang
package

9/28/11

6

Sept 30, 2011 Sprenkle - CSCI209 31

Catching Exceptions

• After we throw an exception, some part of
program needs to catch it
Ø Knows how to deal with the situation that

caused the exception
Ø Handles the problem—hopefully gracefully,

without exiting

Sept 30, 2011 Sprenkle - CSCI209 32

Try/Catch Block

• The simplest way to catch an exception
• Syntax:

try {	
	code;	
	more code;	

} 	
catch (ExceptionType e) {	

	error code for ExceptionType;	
}	
catch (ExceptionType2 e) {	

	error code for ExceptionType2;	
}	
…	

Python equivalent?	

Sept 30, 2011 Sprenkle - CSCI209 33

Try/Catch Block

• Code in try block runs first
•  If try block completes without an exception,
catch block(s) are not executed

•  If try code generates an exception
Ø A catch block runs
Ø Remaining code in try block is not executed

• If an exception of a type other than
ExceptionType is thrown inside try block,
method exits immediately*

try {	
	code;	
	more code;	

} 	
catch (ExceptionType e) {	

	error code for	
	ExceptionType	

}	

Sept 30, 2011 Sprenkle - CSCI209 34

Try/Catch Block

• You can have more than
one catch block
Ø To handle > 1 type of

exception
•  If exception is not of type
ExceptionType1, falls to
ExceptionType2, and so
forth
Ø Run the first matching
catch block

try {	
	code;	
	more code;	

} 	
catch (ExceptionType e) {	

	error code for	
	ExceptionType	

}	
catch (ExceptionType2 e) {	

	error code 	
	for ExceptionType2	

}	
	

Can catch any exception with Exception e
but won’t have customized messages 	

Sept 30, 2011 Sprenkle - CSCI209 35

Try/Catch Example

public void read(BufferedReader in) {	
	try {	
	 	boolean done = false;	
	 	while (!done) {	
	 	 	String line=in.readLine();	
	 	 	// above could throw IOException!	
	 	 	if (line == null)	
	 	 	 	done = true;	
	 	}	
	} 	
	catch (IOException ex) {	
	 	ex.printStackTrace();	
	}	

}	
	 Prints out stack trace to method call

that caused the error	

Sept 30, 2011 Sprenkle - CSCI209 36

Try/Catch Example

public void read(BufferedReader in) {	
	try {	
	 	boolean done = false;	
	 	while (!done) {	
	 	 	String line=in.readLine();	
	 	 	// above could throw IOException!	
	 	 	if (line == null)	
	 	 	 	done = true;	
	 	}	
	} 	
	catch (IOException ex) {	
	 	ex.printStackTrace();	
	}	

}	
	 More precise catch may help pinpoint error	

But could result in messier code	

9/28/11

7

Sept 30, 2011 Sprenkle - CSCI209 37

The finally Block

• Allows you to clean up or do maintenance
before method ends (one way or the other)
Ø E.g., closing files or database connections

try {	
	…	

} 	
catch (Exception e) {	

	…	
}	
finally {	

	…	
}	

• Optional: add a finally
block after all catch blocks
Ø Code in finally block

always runs after code in try
and/or catch blocks
• After try block finishes or, if

an exception occurs, after the
catch block finishes

FinallyTest.java	

Assignment 6

• Due Friday: Practice on Abstract classes and
discussion of design decisions, interfaces,
packages

• Next Wednesday: Midterm Exam
Ø “preparation” document posted today
Ø Terminology heavy

Sept 28, 2011 Sprenkle - CSCI209 38

Analysis of equals methods

Sept 28, 2011 Sprenkle - CSCI209 39

public boolean equals(Object o){	
	if(((Birthday) o).getDate() != this.getDate())	
	 	return false;	

	
	if(((Birthday) o).getMonth() != this.getMonth())	
	 	return false;	
	return true;	

}	

public boolean equals(Object o) {	
	Birthday other = (Birthday) o;	

 if (this.month == other.month && this.day ==
other.day)	
	 	return true;	
	else	
	 	return false;	

}	
Sept 30, 2011 Sprenkle - CSCI209 40

Practice: try/catch/finally Blocks

try {	
	statement1;	
	statement2;	

} 	
catch (EOFException e) {	

	statement3;	
	statement4;	

}	
finally {	

	statement5;	
}	

• Which statements run
if:
Ø Neither statement1

nor statement2
throws an exception

Ø statement1 throws an
EOFException	

Ø statement2 throws an
EOFException	

Ø statement1 throws an
IOException	

What to do with a Caught Exception?

• Dump the stack after the exception occurs
Ø What else can we do?

• Generally, two options:
1.  Catch the exception and recover from it
2.  Pass exception up to whoever called it

Sept 30, 2011 Sprenkle - CSCI209 41

To Throw or Catch?
• Problem: lower-level exception

propagated up to higher-level code
• Example: user enters account

information and gets exception
message “field exceeds allowed
length in database”
Ø Lost context
Ø Lower-level detail polluting higher-level

API

Sept 30, 2011 Sprenkle - CSCI209 42

Solution: higher-levels should catch lower-level exceptions ���
and throw them in terms of higher-level abstraction	

GUI

DB

…

Exception
here

Handled
here	

9/28/11

8

Exception Translation

• Special case: Exception Chaining
Ø When higher-level exception needs info from

lower-level exception

Sept 30, 2011 Sprenkle - CSCI209 43

try {	
	// Call lower-level abstraction	

}	
catch (LowerLevelException ex) {	

	// log exception …	
	throw new HigherLevelException(…);  

}	

try {	
	// Call lower-level abstraction	

}	
catch (LowerLevelException cause) {	

	// log exception …	
	throw new HigherLevelException(cause);  

}	

Most standard
Exceptions have this

constructor	

Guidelines for Exception Translation

• Try to ensure that lower-level APIs succeed
Ø Ex: verify that your parameters satisfy invariants

•  Insulate higher-level from lower-level
exceptions
Ø Handle in some reasonable way
Ø Always log problem so admin can check

•  If can’t do previous two, then use exception
translation

Sept 30, 2011 Sprenkle - CSCI209 44

Summary: Methods Throwing Exceptions

• API documentation tells you if a method can
throw an exception
Ø If so, you must handle it

•  If your method could possibly throw an
exception (by generating it or by calling
another method that could), advertise it!
Ø If you can’t handle every error, that’s OK…let

whoever is calling you worry about it
Ø However, they can only handle the error if you

advertise the exceptions you can’t deal with

Sept 30, 2011 Sprenkle - CSCI209 45

Programming with Exceptions
• Exception handling is slow

• Use one big try block instead of
nesting try-catch blocks
Ø Speeds up Exception Handling
Ø Otherwise, code gets too messy

• Don't ignore exceptions (e.g., catch
block does nothing)
Ø Better to pass them along to higher calls

Sept 30, 2011 Sprenkle - CSCI209 46

try {	
}	
catch () {  
}	
try {	
}	
catch () {  
}	

try {	
	try {	
	}	
	catch () {  
	}	

}	
catch () {  
}	

try {	
	… 		
	…	

}	
catch () {  
}	

Creating Our Own Exception Class

• Try to reuse an existing exception
Ø Match in name as well as semantics

•  If you cannot find a predefined Java
Exception class that describes your
condition, implement a new Exception
class!

Sept 30, 2011 Sprenkle - CSCI209 47 Sept 30, 2011 Sprenkle - CSCI209 48

Creating Our Own Exception Class

public class FileFormatException extends IOException {	
	public FileFormatException() {	

 	
	}	

	
	public FileFormatException(String message) {	
	 	super(message);	
	}	

	
	// other 2 standard constructors…	

}	

• Can now throw exceptions of type
FileFormatException	

What happens in this constructor implicitly?	

Is this a checked or unchecked exception?	

9/28/11

9

Guidelines for Creating Your Own
Exception Classes

•  Include accessor methods to get more
information about the cause of the exception
Ø “failure-capture information”

• Checked or unchecked exception?
Ø Checked: forces API user to handle BUT more

difficult to use API
•  Has to handle all checked exceptions

Ø Use checked exception if exceptional condition
cannot be prevented by proper use of API and
API user can take a useful action afterward

Sept 30, 2011 Sprenkle - CSCI209 49

Practice: Designing a New Exception
Class

• Scenario: When an attempt to make a
purchase with a gift card fails because card
doesn’t have enough money, throw a new
exception that you created

• Recall that all Exceptions are Throwable,
so they have the methods: getMessage(),
printStackTrace(), getStackTrace
()	

Sept 30, 2011 Sprenkle - CSCI209 50

• How would someone else use your class?	

• What constructors, additional method(s) may you
want to add for your exception class?	

Sept 30, 2011 Sprenkle - CSCI209 51

Benefits of Exceptions?

Sept 30, 2011 Sprenkle - CSCI209 52

Benefits of Exceptions
• Force error checking/handling

Ø Otherwise, won’t compile
Ø Does not guarantee “good” exception handling

• Ease debugging
Ø Stack trace

• Separates error-handling code from “regular”
code
Ø Error code is in catch blocks at end
Ø Descriptive messages with exceptions

• Propagate methods up call stack
Ø Let whoever “cares” about error handle it

• Group and differentiate error types

