
10/12/09

1

•  Collections
•  Enumerated types

•  Sometimes called containers
•  Group multiple elements into a single unit
•  Store, retrieve, manipulate, and communicate

aggregate data
•  Represent data items that form a natural group

 Poker hand (a collection of cards)
 Mail folder (a collection of messages)
 Telephone directory (a mapping of names to phone

numbers).
•  Examples: HashMaps, Sets, Lists	

•  Unified architecture for representing and
manipulating collections

•  More than arrays
 More flexible, functionality, dynamic sizing

• java.util	

•  Interfaces
 Abstract data types that represent collections
 Collections can be manipulated independently of

implementation
•  Implementations

 Concrete implementations of collection interfaces
 Reusable data structures

•  Algorithms
 Methods that perform useful computations on

collections, e.g., searching and sorting
 Reusable functionality
 Polymorphic: same method can be used on many

different implementations of collection interface

•  Encapsulate different types of collections

10/12/09

2

•  Preferred Style:
1.  Choose an implementation
2.  Assign collection to variable of corresponding

interface type

• Also, methods should accept interfaces, not
implementations

Implementation choice only affects performance

Interface variable = new Implementation();	

Why is this the preferred style?

•  Preferred Style:
1.  Choose an implementation
2.  Assign collection to variable of corresponding

interface type
• Why?

 Program does not depend on a given
implementation’s methods

 Programmer can change implementations
•  Performance concerns or behavioral details

Implementation choice only affects performance

•  Before Java 1.5
•  Doesn’t know what type of data is in the List

List myIntList = new LinkedList();	
myIntList.add(new Integer(0));	
…	
Integer x = (Integer) myIntList.get(0);	

• Have to cast object we get out of list
• What if someone put in an object of wrong
type previously?

Returns an object

•  Added to 1.5
•  Declaration of the Collection interface:
	public interface Collection<E> …	
 <E> means interface is generic for element class

•  When declare a Collection, specify type of
object it contains
 Make sure put in, get out appropriate type
 Allows compiler to verify that object’s type is correct

•  Reduces errors at runtime
•  Example, a hand of cards:

List<Card> hand = new List<Card>();	

Type
parameter

Always declare type

•  Also uses Generics

public interface Comparable<T>	

int compareTo(T o) 	

The type it compares

10/12/09

3

•  Can only contain Objects, not primitive
types

•  Autoboxing and Autounboxing to the rescue!
 Example: If collecting ints, use Integer	

•  Before Generics

•  After Generics

List myIntList = new LinkedList();	
myIntList.add(new Integer(0));	
…	
Integer x = (Integer) myIntList.get(0);	

List<Integer> myIntList = new LinkedList<Integer>();	
myIntList.add(new Integer(0));	
…	
Integer x = myIntList.get(0);	

  Improved readability and robustness

•  An ordered collection of elements
•  Can contain duplicate elements
•  Has control over where objects are stored in the list
• boolean add(<E> o)	

 Boolean so that List can refuse some elements
•  e.g., refuse adding null elements

• <E> get(int index)	
 Returns element at the position index"

• int size() 	
 Returns the number of elements in the list"

•  And more! (contains, remove, toArray, …)"

•  No shorthand
 list[pos]	

• ArrayList	
 Resizable array
 Used most frequently
 Fast

• LinkedList	
 Use if adding elements to beginning of list
 Use if often delete from middle of list

cards.Deck.java	

10/12/09

4

•  No duplicate elements
 Needs to determine if two elements are “logically” the

same (equals method)
•  Models mathematical set abstraction
• boolean add(<E> o)	

 Add to set, only if not already present
• int size() 	

 Returns the number of elements in the list"
•  And more! (contains, remove, toArray, …)"

 Note: no get method -- get #3 from the set?"

• HashSet	
  Implements set using hash table

• add, remove, and contains each execute in O(1)
time

 Used more frequently
 Faster than TreeSet	
 No ordering

• TreeSet	
  Implements set using a tree

• add, remove, and contains each execute in O
(log n) time

 Sorts

•  From the array of command-line arguments,
identify the duplicates

public static void main(String args[]) {	

}	

public static void main(String args[]) {	
	Set<String> s = new HashSet<String>();	
	for (String a : args) {	
	 	if (!s.add(a)) {	
	 	 	System.out.println(
	 	 	 	"Duplicate detected: " + a);	
	 	}	
	}	
	System.out.println(s.size() +	
	 	 " distinct words detected: " + s);	

}	

Note how much code changes if s is a TreeSet	

