
9/30/11

1

Objectives

• Finish up Exceptions
• Files
• Streams

Sept 30, 2011 Sprenkle - CSCI209 1 Sept 30, 2011 Sprenkle - CSCI209 2

Review

• What are the two types of exceptions?
• What are some ways to handle exceptions?
• What does it mean to “advertise” an

exception?

Sept 30, 2011 Sprenkle - CSCI209 3

Practice: try/catch/finally Blocks

try {	
	statement1;	
	statement2;	

} 	
catch (EOFException e) {	

	statement3;	
	statement4;	

}	
finally {	

	statement5;	
}	

• Which statements run
if:
Ø Neither statement1

nor statement2
throws an exception

Ø statement1 throws an
EOFException	

Ø statement2 throws an
EOFException	

Ø statement1 throws an
IOException	

What to do with a Caught Exception?

• Dump the stack after the exception occurs
Ø What else can we do?

• Generally, two options:
1.  Catch the exception and recover from it
2.  Pass exception up to whoever called it

Sept 30, 2011 Sprenkle - CSCI209 4

Design Decision:
To Throw or Catch?
• Problem: lower-level exception

propagated up to higher-level code
• Example: user enters account

information and gets exception
message “field exceeds allowed
length in database”

Sept 30, 2011 Sprenkle - CSCI209 5

What do you think happened?	

Is this a good solution?	

GUI

DB

…

Exception
here

Handled
here	

Design Decision:
To Throw or Catch?
• Problem: lower-level exception

propagated up to higher-level code
• Example: user enters account

information and gets exception
message “field exceeds allowed
length in database”
Ø Lost context
Ø Lower-level detail polluting higher-level

API

Sept 30, 2011 Sprenkle - CSCI209 6

Solution: higher-levels should catch lower-level exceptions ���
and throw them in terms of higher-level abstraction	

GUI

DB

…

Exception
here

Handled
here	

9/30/11

2

Exception Translation

• Special case: Exception Chaining
Ø When higher-level exception needs info from

lower-level exception

Sept 30, 2011 Sprenkle - CSCI209 7

try {	
	// Call lower-level abstraction	

}	
catch (LowerLevelException ex) {	

	// log exception …	
	throw new HigherLevelException(…);  

}	

try {	
	// Call lower-level abstraction	

}	
catch (LowerLevelException cause) {	

	// log exception …	
	throw new HigherLevelException(cause);  

}	

Most standard
Exceptions have this

constructor	

Guidelines for Exception Translation

• Avoidance!
Ø Try to ensure that lower-level APIs succeed
Ø Ex: verify that your parameters satisfy invariants

•  Insulate higher-level from lower-level
exceptions
Ø Handle in some reasonable way
Ø Always log problem so admin can check

•  If can’t do previous two, then use exception
translation

Sept 30, 2011 Sprenkle - CSCI209 8

Summary: Methods Throwing Exceptions

• API documentation tells you if a method can
throw an exception
Ø If so, you must handle it

•  If your method could possibly throw an
exception (by generating it or by calling
another method that could), advertise it!
Ø If you can’t handle every error, that’s OK…let

whoever is calling you worry about it
Ø However, they can only handle the error if you

advertise the exceptions you can’t deal with

Sept 30, 2011 Sprenkle - CSCI209 9

Programming with Exceptions
• Exception handling is slow

• Use one big try block instead of
nesting try-catch blocks
Ø Speeds up Exception Handling
Ø Otherwise, code gets too messy

• Don't ignore exceptions (e.g., catch
block does nothing)
Ø Better to pass them along to higher calls

Sept 30, 2011 Sprenkle - CSCI209 10

try {	
}	
catch () {  
}	
try {	
}	
catch () {  
}	

try {	
	try {	
	}	
	catch () {  
	}	

}	
catch () {  
}	

try {	
	… 		
	…	

}	
catch () {  
}	

Creating Our Own Exception Class

• Try to reuse an existing exception
Ø Match in name as well as semantics

•  If you cannot find a predefined Java
Exception class that describes your
condition, implement a new Exception
class!

Sept 30, 2011 Sprenkle - CSCI209 11 Sept 30, 2011 Sprenkle - CSCI209 12

Creating Our Own Exception Class

public class FileFormatException extends IOException {	
	public FileFormatException() {	

 	
	}	

	
	public FileFormatException(String message) {	
	 	super(message);	
	}	

	
	// other 2 standard constructors…	

}	

• Can now throw exceptions of type
FileFormatException	

What happens in this constructor implicitly?	

Is this a checked or unchecked exception?	

9/30/11

3

Guidelines for Creating Your Own
Exception Classes

•  Include accessor methods to get more
information about the cause of the exception
Ø “failure-capture information”

• Checked or unchecked exception?
Ø Checked: forces API user to handle BUT more

difficult to use API
•  Has to handle all checked exceptions

Ø Use checked exception if exceptional condition
cannot be prevented by proper use of API and
API user can take a useful action afterward

Sept 30, 2011 Sprenkle - CSCI209 13 Sept 30, 2011 Sprenkle - CSCI209 14

Discussion: Benefits of Exceptions

• Been talking about details…

• Why does Java have exceptions as part of
the language?

• Why does Java add some features that
Python doesn’t have?

Sept 30, 2011 Sprenkle - CSCI209 15

Benefits of Exceptions
•  Ease debugging

Ø Stack trace
•  Separates error-handling code from “regular” code

Ø Error code is in catch blocks at end
Ø Descriptive messages with exceptions

•  Propagate methods up call stack
Ø  Let whoever “cares” about error handle it

• Group and differentiate error types
•  Checked exceptions: Force error checking/handling

Ø Otherwise, won’t compile
Ø Does not guarantee “good” exception handling

FILES

Sept 30, 2011 Sprenkle - CSCI209 16

java.io.File Class

• Represents a file or directory
• Provides functionality such as

Ø Storage of the file on the disk
Ø Determine if a particular file exists
Ø When file was last modified
Ø Rename file
Ø Remove/delete file
Ø …

Sept 30, 2011 Sprenkle - CSCI209 17

Making a File Object

• Simplest constructor takes full file name
(including path)
Ø If don’t supply path, Java assumes current

directory (.)

Ø Creates a File object representing a file named
“chicken.data” in the current directory

Ø Does not create a file with this name on disk

Sept 30, 2011 Sprenkle - CSCI209 18

File f1 = new File("chicken.data");	

9/30/11

4

Sept 30, 2011 Sprenkle - CSCI209 19

Files, Directories, and Useful Methods

• A File object can represent a file or a
directory
Ø Directories are special files in most modern

operating systems
• Use isDirectory() and/or isFile() for

type of file File object represents
• Use exists() method

Ø Determines if a file exists on the disk

Sept 30, 2011 Sprenkle - CSCI209 20

More File Constructors
• String for the path, String for filename

• File for directory, String for filename

File f2 = new File(
 "/home/courses/cs209/handouts","chicken.data");	

File dir= new File("/home/courses/cs209/handouts");	
File f4 = new File(dir, "chicken.data");	

Sept 30, 2011 Sprenkle - CSCI209 21

“Break” any of Java’s Principles? Not Portable

• Accessing the file system is inherently not
portable
Ø In Windows, paths are “c:\\dir”
Ø In Unix, paths are “/home/courses/dir”

• Relies on underlying file system/operating
system to perform actions

Sept 30, 2011 Sprenkle - CSCI209 22

Handling Portability Issues

• Static fields in File class
Ø static separator	

•  Unix: "/"
•  Windows: "\\"

Ø static pathSeparator	
•  For separating a list of paths
•  Unix: ":"
•  Windows: ";"

• Use relative paths, with separators

Sept 30, 2011 Sprenkle - CSCI209 23

Why two \\?	

Sept 30, 2011 Sprenkle - CSCI209 24

java.io.File Class
• 25+ methods

Ø Manipulate files and directories
Ø Creating and removing directories
Ø Making, renaming, and deleting files
Ø Information about file (size, last modified)
Ø Creating temporary files
Ø …

• See online API documentation

FileTest.java	

9/30/11

5

STREAMS

Sept 30, 2011 Sprenkle - CSCI209 25 Sept 30, 2011 Sprenkle - CSCI209 26

Streams

• Java handles input/output using streams,
which are sequences of bytes

input stream: an object from which we can
read a sequence of bytes
abstract class: java.io.InputStream	

Sept 30, 2011 Sprenkle - CSCI209 27

Streams

• Java handles input/output using streams,
which are sequences of bytes

output stream: an object to which we can
write a sequence of bytes
abstract class: java.io.OutputStream	

Java Streams
• MANY (80+) types of Java streams
•  In java.io package
• Why stream abstraction?

Ø Information stored in different sources is
accessed in essentially the same way
•  Example sources: file, on a web server across the

network, string
Ø Allows same methods to read or write data,

regardless of its source
•  Create an InputStream or OutputStream of

the appropriate type

Sept 30, 2011 Sprenkle - CSCI209 28

Sept 30, 2011 Sprenkle - CSCI209 29

java.io Classes Overview

• Two types of stream classes, based on
datatype: Byte, Text

• Abstract base classes for binary data:

• Abstract base classes for text data:

InputStream	 OutputStream	

Reader	 Writer	

Sept 30, 2011 Sprenkle - CSCI209 30

Byte Streams

Abstract Base Classes

Shaded: Read to/write from data sinks
White: Does some processing

•  For binary data
•  In java.io package

9/30/11

6

Sept 30, 2011 Sprenkle - CSCI209 31

Character Streams

Abstract Base Classes

Shaded: Read to/write from data sinks
White: Does some processing

• For Text
• In java.io package
• Handle any character

in Unicode set

Sept 30, 2011 Sprenkle - CSCI209 32

Console I/O

• Output:
Ø System.out is a PrintStream object

•  Input
Ø System.in is an InputStream object	
Ø Throws exceptions if format of input data is not

correct
•  Handle in try/catch	

Opening & Closing Streams

• Streams are automatically opened when
constructed

• Close a stream by calling its close()
method
Ø Close a stream as soon as object is done with it
Ø Free up system resources

Sept 30, 2011 Sprenkle - CSCI209 33

Reading & Writing Bytes

• Abstract parent class: InputStream
Ø abstract int read()

•  reads one byte from the stream and returns it

• Concrete input stream classes override read
() to provide appropriate functionality
Ø e.g., FileInputStream’s read() reads one

byte from a file
• Similarly, OutputStream class has abstract
write() to write a byte to the stream

Sept 30, 2011 Sprenkle - CSCI209 34

Sept 30, 2011 Sprenkle - CSCI209 35

Reading & Writing Bytes

• read() and write() are blocking operations
Ø If a byte cannot be read from the stream, the

method waits (does not return) until a byte is read
• available() : get the number of bytes that

are available for reading
•  Example use:

int bytesAvailable = System.in.available();	
if (bytesAvailable > 0) 		

	System.in.read(byteBuffer);	

Sept 30, 2011 Sprenkle - CSCI209 36

File Input and Output Streams
• FileInputStream: provides an input

stream that can read from a file
Ø Constructor takes the name of the file:

Ø Or, uses a File object …

FileInputStream fin = new 	
	 	FileInputStream("chicken.data");	

File inputFile = new File("chicken.data");	
FileInputStream fin = new FileInputStream(inputFile);	

FileTest2.java	

9/30/11

7

To Do

• Assignment 7
Ø Modifying Olympic Score generator

•  Read difficulty score from console
•  Read execution scores from a file

Ø Filename comes from console

Ø Due Friday, but should start before midterm

• Next Wednesday: Midterm
Ø Prep document online

Sept 30, 2011 Sprenkle - CSCI209 37

