Objectives

Exceptions
» Why Exceptions?
» Throwing exceptions
» Catching exceptions
» Generating our own exception classes

Sept 28, 2011 Sprenkle - CSCI209 1

Review

How do we specify that a class or a method
cannot be subclassed/overridden?

Compare and contrast abstract classes and
interfaces

When should a class be abstract?
When should you create/use an interface?

What is the keyword for defining your class to
implement an interface?

Sept 28, 2011 Sprenkle - CSCI209 2

EXCEPTIONS

Sept 28, 2011 Sprenkle - CSCI209 3

Errors

Programs encounter errors when they run

» Users may enter data in the wrong form

» Files may not exist

» Program code has bugs!*
When an error occurs, a program should do
one of two things:

» Revert to a stable state and continue

» Allow the user to save data and then exit the
program gracefully

* (Of course, not your programs)
Sept 28, 2011 Sprenkle - CSCI209 4

Java Method Behavior

Normal/correct case: return specified return
type

Error case: does not return anything, throws
an Exception

» An exception is an event, which occurs during

execution of a program, that disrupts normal flow
of program's instructions

» Exception: object that encapsulates error
information

Similar to Python

Sept 28, 2011 Sprenkle - CSCI209 5

Handling Exceptions

JVM’s exception-handling mechanism searches for
an exception handler—the error recovery code
» Exception handler deals with a particular exception

» Searches call stack for a method that can handle (or
catch) the exception
Method where

error occurred
Method call

Method without an
xception handler

Method call

Method with an
xception handler

Method call

main

OXOXORO,
J3|pUBY 40} JOP.IO YDUeS

Call stack

Sept 28, 2011 Sprenkle - CSCI209 6

Throwable
Error Exception
All exceptions indirectly derive from
Throwable

»Child classes: Error and Exception
Important Throwable methods
»getMessage()
Detailed message about error
»printStackTrace()

Prints out where problem occurred and path to
reach that point

»getStackTrace()
Get the stack in non-text format

Sept 28, 2011 Sprenkle - CSCI209

Printing Stack Trace Example

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

How helpful is this output?
How user friendly is it?

Sept 28, 2011 Sprenkle - CSCI209

Printing Stack Trace Example

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

How helpful is this output?
How user friendly is it?

Useful for debugging your code
Generate/display user-friendly errors in finished

product
« Often requires “higher-level code” to handle exception
Sept 28, 2011 Sprenkle - CSCI209 9

Exception Classification: Error

An internal error
Strong convention: reserved for JVM
»JVM-generated when resource exhaustion or an
internal problem
Example: Out of Memory error

When can that
happen in Java?

Program’s code should not and can not throw
an object of this type
Unchecked exception

Exception Classifications

RuntimeException: something that

happens because of a programming error

»Unchecked exception

»Examples: ArrayOutOfBoundsException,
NullPointerException,
ClassCastException

Checked exceptions

» A well-written application should anticipate and
recover from

»Examples: I0Exception, SQLException

Sept 28, 2011 Sprenkle - CSCI209

Sept 28, 2011 Sprenkle - CSCI209 10

Part of java.lang
package

Exception Classification

Exception

Upfcheckec

RuntimeException

Checked:All non-
RuntimeExceptions

Checked

Sept 28, 2011 Sprenkle - CSCI209

Types of Exceptions

Unchecked Checked

Any exception that derives Any other exception
from Error or » Programmer creates and
RuntimeException handles checked

> Programmer does not exceptions
create/handle » Compiler-enforced
checking

» Try to make sure that they
Improves reliability

don’t occur
» Often indicates For conditions from which
programmer error caller can reasonably be
E.g., precondition expected to recover
violations, not using API
correctly
Sept 28, 2011 Sprenkle - CSCI209 13

Types of Unchecked Exceptions

Derived from the class Error

» Any line of code can generate because it is an
internal error

» Don’t worry about what to do if this happens
Derived from the class RuntimeException
» Indicates a bug in the program

» Fix the bug

» Examples: ArrayOutOfBoundsException,

NullPointerException,
ClassCastException

Sept 28, 2011 Sprenkle - CSCI209 14

Checked Exceptions

Need to be handled by your program
» Compiler enforced
Advertise the exceptions that a method
throws
» For each method, tell the compiler:
What the method returns
What could possibly go wrong
» Helps users of your interface know what method
does and lets them decide how to handle
exceptions

Sept 28, 2011 Sprenkle - CSCI209 15

Discussion: Why Checked and Unchecked
Exceptions?

Why do we have exceptions that the compiler
doesn’t force the programmer to check?
» Think about examples of unchecked exceptions
and when those exceptions can occur

Sept 28, 2011 Sprenkle - CSCI209 16

THROWING EXCEPTIONS

Sept 28, 2011 Sprenkle - CSCI209 17

Methods and Exceptions Example

BufferedReader has method readLine()
» Reads a line from a stream, such as a file or
network connection

Method header: Part of “/?dverﬁsing”

I]
public String readlLine() throws IOException

Interpreting the header: readLine will
» return a String (if everything went right)
> throw an I0Exception (if something went
wrong)

Sept 28, 2011 Sprenkle - CSCI209 18

Advertising Checked Exceptions

Advertising: in Javadoc, document under
what conditions each exception is thrown
»@throws tag

Examples of when your method should
advertise the checked exceptions that it may
throw
» Your method calls a method that throws a
checked exception
» Your method detects an error in its processing
and decides to throw an exception

Sept 28, 2011 Sprenkle - CSCI209 19

Example: Passing an Exception “Up”

public String readData(BufferedReader in)
throws IOException { .
String stril; o~ Throwsan IOException
strl = in.readlLine();
return strl;

}

readData() calls a method that can throw an
IOException

readLine() will throw this exception to our method

» Assuming we don’t want to handle the exception, we
throw the exception as well

> Whoever calls readData will handle exception

Sept 28, 2011 Sprenkle - CSCI209 20

Throwing An Exception We Created

if (month < 1 || month > 12) {
throw new IllegalArgumentException();
}

Create a new object of class
IllegalArgumentException

»Class derived from RuntimeException
throw it

»Method ends at this point

»Calling method handles exception

Equivalent in Python?

Sept 28, 2011 Sprenkle - CSCI209 21

A More Descriptive Exception

Four constructors for most Exception classes
» Default (no parameters)
> Takes a String message
Describe the condition that generated this
exception more fully
» 2 more
if (month < 1 Il month > 12) {

throw new IllegalArgumentException(
"Month is not in valid range (1-12)");

Best messages include all state that
Sept 28, 2011 could have contributed to the problem 22

Common Exceptions

IllegalArgumentException When caller passes in inappropriate
argument

IllegalStateException Invocation is illegal because of
receiving object’s state. (Ex: closing a
closed window)

Both inherit from RuntimeException
May seem like these cover everything but only used for
certain kinds of illegal arguments and exceptions
Not used when
» A null argument passed in; should be a
NullPointerException
» Pass in invalid index for an array; should be an
IndexOutOfBoundsException

Sept 28, 2011 Sprenkle - CSCI209 23

Factorial Alternatives

public static double factorial(int x) {
if(x <0)
return 0.0;
double fact = 1.0;
while(x > 1) {
fact *= x;
X==3

return fact;

Sept 28, 2011 Sprenkle - CSCI209 24

Note, no @throws clause

Factorial Alternatives |y

public static double factorial(int x) {
if(x <0)
throw new IllegalArgumentException("x" +
"must be >= 0");

do‘j'ble fact = 1.0; IllegalArgumentException:

while(x > 1) { Thrown to indicate that a method has
fact *= X5 been passed an illegal or inappropriate
X--3 argument

return fact;

}

‘ What are the pros and cons of these approaches?

Sept 28, 2011 Sprenkle - CSCI209 25

Rules about @throws

Always report if throw checked exceptions
Report any unchecked exceptions that the
caller might reasonably want to catch

» Exception: Nul1PointerException

» Allows caller to handle (or not)

» Document exceptions that are independent of the

underlying implementation

Errors should not be documented as they are
unpredictable

Sept 28, 2011 Sprenkle - CSCI209 26

Goal: Failure Atomicity

After an object throws an exception, the object
should be in a well-defined, usable state
» A failed method invocation should leave object in
state prior to invocation
Approaches:
» Check parameters/state before performing operation
(s)
» Do the failure-prone operations first
» Use recovery code to “rollback” state
» Apply to temporary object first, then copy over values

Sept 28, 2011 Sprenkle - CSCI209 27

Practice

public void setBirthday(int month, int day) {
}

How should we implement this method?
What are some problems we could face?

Sept 28, 2011 Sprenkle - CSCI209 28

CATCHING EXCEPTIONS

Sept 30, 2011 Sprenkle - CSCI209 29

Part of java.lang
package

Exception Classification

Exception

Unghecked

RuntimeException

Checked:All non-
RuntimeExceptions

Checked

Sept 28, 2011 Sprenkle - CSCI209 30

Catching Exceptions Try/Catch Block

After we throw an exception, some part of The simplest way to catch an exception
program needs to catch it Syntax:

»Knows how to deal with the situation that
caused the exception try { o

»Handles the problem—hopefully gracefully, more code;

without exiting catch (ExceptionType e) {

error code for ExceptionType;

}
catch (ExceptionType2 e) {
error code for ExceptionTypeZ;

}
Sept 30, 2011 Sprenkle - CSCI209 31 Sept 30, 2011 Sprenkle - CSCI209 32
try {
Try/Catch Block code; Try/Catch Block
more code;
}
catch (Excepti(;nT{cpe e) { try { . You can have more than
error code for code;
ExcoptionType nore code: one catch block
»To handle > 1 type of
. - catch (ExceptionType e) { exception
Code in try block runs first error code for P
. . ExceptionType If exception is not of type
If try block completes without an exception, P P ExceptionTypel. falls
catch block(s) are not executed ¥ g ptl Jpes, falisio
. catch (ExceptionType2 e) { ExceptlonTypeZ’ and so
If try code generates an exception error code forth
»A catch block runs for ExceptionTypeZ °)
.) . } » Run the first matching
»Remaining code in try block is not executed catch block
If an exception of a type other than — .
ExceptionType is thrown inside try block, R e b cailExceptionie
method exits |mmediate|y* but won’t have customized messages
Sept 30, 2011 Sprenkle - CSCI209 33 Sept 30, 2011 Sprenkle - CSCI209 34
Try/Catch Example Try/Catch Example
public void read(BufferedReader in) { public void read(BufferedReader in) {
try { try {
boolean done = false; boolean done = false;
while (!done) { while (!done) {
String line=in.readLine(); String line=in.readlLine();
// above could throw IOException! // above could throw IOException!
if (line == null) if (line == null)
done = true; done = true;
} }
} }
catch (IOException ex) { catch (IOException ex) {
ex.printStackTrace(); ex.printStackTrace();
} \ }
¥ Prints out stack trace to method call ¥ More precise catch may help pinpoint error
that caused the error But could result in messier code
Sept 30, 2011 Sprenkle - CSCI209 35 Sept 30, 2011 Sprenkle - CSCI209 36

The finally Block v

Optional: add a finally Latch CException € {
block after all catch blocks
»Code in finally block finally {

always runs after code in try
and/or catch blocks

After try block finishes or, if
an exception occurs, after the
catch block finishes

Allows you to clean up or do maintenance
before method ends (one way or the other)
~E.g., closing files or database connections

FinallyTest. java37

Sept 30, 2011 Sprenkle - CSCI209

Assignment 6

Due Friday: Practice on Abstract classes and
discussion of design decisions, interfaces,

packages

Next Wednesday: Midterm Exam
» “preparation” document posted today

» Terminology heavy

Sept 28, 2011 Sprenkle - CSCI209 38

Analysis of equals methods

public boolean equals(Object o){
if(((Birthday) o).getDate() != this.getDate())
return false;

if(((Birthday) o).getMonth() != this.getMonth())
return false;
return true;

}

public boolean equals(Object o) {
Birthday other = (Birthday) o;
if (this.month == other.month && this.day ==
other.day)
return true;
else
return false;

Sept 28, 2011 Sprenkle - CSCI209 39

Practice: try/catch/finally Blocks
Which statements run

try { if:
statementl; i
statement2; >Neither statementl
3) nor statement?2
catch (EOFException e) { throws an exception
statement3;
statement4; »statementl throws an
]}C_ n EOFException
e);t({,te,,,e,,ﬁ; »statement?2 throws an
3 EOFException
»statementl throws an
IOException
Sept 30, 2011 Sprenkle - CSCI209 40

What to do with a Caught Exception?

Dump the stack after the exception occurs
» What else can we do?

Generally, two options:
1. Catch the exception and recover from it
2. Pass exception up to whoever called it

Sept 30, 2011 Sprenkle - CSCI209 41

To Throw or Catch?

Handled = GUI

here

Problem: lower-level exception

propagated up to higher-level code

DB
Example: user enters account t
mformatlop_and gets exception Exception
message “field exceeds allowed here

length in database”
» Lost context

» Lower-level detail polluting higher-level

API

Solution: higher-levels should catch lower-level exceptions
and throw them in terms of higher-level abstraction

Sept 30, 2011 Sprenkle - CSCI209 42

Exception Translation

y {
// Call lower-level abstraction

catch (LowerLevelException ex) {
// log exception ..
throw new HigherLevelException(..);

Special case: Exception Chaining

» When higher-level exception needs info from
lower-level exception
Most standard
Exceptions have this
constructor

try {
// Call lower-level abstraction

}
catch (LowerLevelException cause) {
// log exception ..
throw new HigherLevelException(cause);

t} 43

[r——

Guidelines for Exception Translation

Try to ensure that lower-level APIs succeed
» Ex: verify that your parameters satisfy invariants
Insulate higher-level from lower-level
exceptions
» Handle in some reasonable way
» Always log problem so admin can check
If can’t do previous two, then use exception
translation

Sept 30, 2011 Sprenkle - CSCI209 44

Summary: Methods Throwing Exceptions

API documentation tells you if a method can
throw an exception
» If so, you must handle it

If your method could possibly throw an
exception (by generating it or by calling
another method that could), advertise it!
» If you can’t handle every error, that's OK...let
whoever is calling you worry about it
» However, they can only handle the error if you
advertise the exceptions you can’t deal with

Sept 30, 2011 Sprenkle - CSCI209 45

Programming with Exceptions

Exception handling is slow

Use one big try block instead of
nesting try-catch blocks

» Speeds up Exception Handling

» Otherwise, code gets too messy
catch O {

Don't ignore exceptions (e.g., catch
block does nothing)

> Better to pass them along to higher calls 3
catch OO {
b

try {

Sept 30, 2011 Sprenkle - CSCI209

Creating Our Own Exception Class

Try to reuse an existing exception
» Match in name as well as semantics

If you cannot find a predefined Java
Exception class that describes your
condition, implement a new Exception
class!

Sept 30, 2011 Sprenkle - CSCI209 47

Creating Our Own Exception Class

public class FileFormatException extends IOException {
public FileFormatException() {

3 ‘ What happens in this constructor implicitly?

public FileFormatException(String message) {
super(message);

// other 2 standard constructors..

| Is this a checked or unchecked exception?

Can now throw exceptions of type
FileFormatException

Sept 30, 2011 Sprenkle - CSCI209 48

Guidelines for Creating Your Own
Exception Classes

Include accessor methods to get more
information about the cause of the exception
» “failure-capture information”

Checked or unchecked exception?

» Checked: forces API user to handle BUT more
difficult to use API
Has to handle all checked exceptions
» Use checked exception if exceptional condition
cannot be prevented by proper use of API and
API user can take a useful action afterward

Sept 30, 2011 Sprenkle - CSCI209 49

Practice: Designing a New Exception
Class

Scenario: When an attempt to make a
purchase with a gift card fails because card
doesn’t have enough money, throw a new
exception that you created

Recall that all Exceptions are Throwable,

so they have the methods: getMessage(),
p()glntStackTr'ace(), getStackTrace

*How would someone else use your class?
* What constructors, additional method(s) may you
want to add for your exception class?

Sept 30, 2011 Sprenkle - CSCI209 50

Benefits of Exceptions?

Sept 30, 2011 Sprenkle - CSCI209 51

Benefits of Exceptions

Force error checking/handling

» Otherwise, won’t compile

» Does not guarantee “good” exception handling
Ease debugging

» Stack trace

Separates error-handling code from “regular”
code

» Error code is in catch blocks at end

» Descriptive messages with exceptions
Propagate methods up call stack

» Let whoever “cares” about error handle it
Group and differentiate error types

Sept 30, 2011 Sprenkle - CSCI209 52

