
9/21/11

1

Objectives

• Parameter passing in Java
•  Inheritance

Sept 21, 2011 Sprenkle - CSCI209 1 Sept 21, 2011 Sprenkle - CSCI209 2

Review

• What does static mean?
• What does Java provide to prevent memory

leaks?
• What method should we implement to allow

pretty printing of objects?
Ø To determine if two objects are equivalent?

Assignment 2 Review

•  Is the above code correct?

Sept 21, 2011 Sprenkle - CSCI209 3

	private int oneVar;	
		
	public Assign2(int arg) {	
	 	oneVar = arg;	
	}

Sept 21, 2011 Sprenkle - CSCI209 4

Analyzing java.lang.String	
• String toUpperCase() 	

Ø Converts all of the characters in this String to
upper case

• static String valueOf(boolean b)	
Ø Returns the string representation of the boolean

argument

Why can (should) the second method be static?	

When should a method be declared static?

PARAMETER PASSING

Sept 21, 2011 Sprenkle - CSCI209 5 Sept 21, 2011 Sprenkle - CSCI209 6

Method Parameters in Java
• Java always passes parameters into methods

by value
Ø Methods cannot change the variables used as

input parameters
Ø A subtle point, so we need to go through several

examples

• Python is something that’s not quite pass-by-
value—it depends on if the object is mutable
or immutable
Ø Pass-by-alias is one term used

9/21/11

2

Sept 21, 2011 Sprenkle - CSCI209 7

Method Parameters in Java
public static void main(String[] args) {	

	int x = 10;	
	int squared = square(x);	
	System.out.println("The square of " + x + " is " +
	 	 	 	squared);	

}	

public static int square(int num) {	
	return num*=num;	

}

Draw the stack as it changes
(similar to Python):	

 main	 x 10	

Sept 21, 2011 Sprenkle - CSCI209 8

What’s the Output?

public static void main(String[] args) {	
	int x = 27;	
	System.out.println(x);	
	doubleValue(x);	
	System.out.println(x);	

}	
. . .	
	
void doubleValue(int p) {	

	p = p * 2;	
}	

Sept 21, 2011 Sprenkle - CSCI209 9

What’s the Output?

public static void main(String[] args) {	
	int x = 27;	
	System.out.println(x);	
	doubleValue(x);	
	System.out.println(x);	

}	
. . .	
	
void doubleValue(int p) {	

	p = p * 2;	
}	

27
27

Pass by Value: Objects

• Primitive types are a little more obvious
Ø Can’t change original variable

• For objects, passing a copy of the parameter
looks like

Sept 21, 2011 Sprenkle - CSCI209 10

public void methodName(Chicken c)	

methodName(chicken);	

chicken =

c =
height =

name =

38

“Fred”

weight =

height =

name =

3.0

45

“Sallie Mae”

x00FFBB!

x00FFBB!

Pass Chicken object to methodName	

Pass by Value: Objects

• What happens in this case?

Sept 21, 2011 Sprenkle - CSCI209 11

public void methodName(Chicken c) {	
	if(c.getWeight() < MIN) {	
	 	c.feed();	
	}	
	…	

}	

methodName(chicken);	

chicken =

c =
height =

name =

38

“Fred”

weight =

height =

name =

3.0

45

“Sallie Mae”

x00FFBB!

x00FFBB!

Does chicken
change in calling

method? 	

Pass by Value: Objects

• What happens in this case?

Sept 21, 2011 Sprenkle - CSCI209 12

public void methodName(Chicken c) {	
	if(c.getWeight() < MIN) {	
	 	c.feed();	
	}	
	…	

}	

methodName(chicken);	

chicken =

c =
height =

name =

38

“Fred”

weight =

height =

name =

3.0

45

“Sallie Mae”

x00FFBB!

x00FFBB!

Does chicken change
in calling method? ���
YES! Both chicken
and c are pointing to the
same object 	

9/21/11

3

Sept 21, 2011 Sprenkle - CSCI209 13

What’s the Output?
Farm farm = new Farm("OldMac");	
Chicken sal = new Chicken("Sallie Mae", 50, 10);	
System.out.println(sal.getWeight());	
farm.feedChicken(sal);	
System.out.println(sal.getWeight());	
. . .	
	
// From Farm class	
void feedChicken(Chicken c) {	

	c.setWeight(c.getWeight() + .5);	
}	
	

Sept 21, 2011 Sprenkle - CSCI209 14 14

What’s the Output?

Farm farm = new Farm("OldMac");	
Chicken sal = new Chicken("Sallie Mae", 50, 10);	
System.out.println(sal.getWeight());	
farm.feedChicken(sal);	
System.out.println(sal.getWeight());	
. . .	
	
// From Farm class	
void feedChicken(Chicken c) {	

	c = new Chicken(c.getName(), c.getWeight(),	
	 	c.getHeight());	
	c.setWeight(c.getWeight() + .5);	

}	

Sept 21, 2011 Sprenkle - CSCI209 15 15

What’s the Difference?
Farm farm = new Farm(“OldMac”);	
Chicken sal = new Chicken(“Sallie Mae”, 50, 10);	
System.out.println(sal.getWeight());	
farm.feedChicken(sal);	
System.out.println(sal.getWeight());	
. . .	
// From Farm class	
void feedChicken(Chicken c) {	

	c = new Chicken(c.getName(), c.getWeight(),	
	 	c.getHeight());	
	c.setWeight(c.getWeight() + .5);	

}	

sal =

c =
height =

name =

38

“Fred”

weight =

height =

name =

10

50

“Sallie Mae”

x00FFBB!

x00FFBB!

Sept 21, 2011 Sprenkle - CSCI209 16 16

What’s the Difference?
void feedChicken(Chicken c) {	

	c = new Chicken(c.getName(), c.getWeight(),	
	 	c.getHeight());	
	c.setWeight(c.getWeight() + .5);	

}	

sal =

c =

height =

name =

38

“Fred”

weight =

height =

name =

10

50

“Sallie Mae”

x00FFBB!

x0AFFBF!
height =

name =

38

“Fred”

weight =

height =

name =

10

50

“Sallie Mae”

Sept 21, 2011 Sprenkle - CSCI209 17

Summary of Method Parameters

• Everything is passed by value in Java

• An object variable (not an object) is passed
into a method
Ø Changing the state of an object in a method

changes the state of object outside the method
Ø Method does not see a copy of the original object

Sept 21, 2011 Sprenkle - CSCI209 18

Encapsulation Revisited

• Objects should hide their data and only allow
other objects to access this data through a
public interface

• Common programmer mistake:
Ø Creating an accessor method that returns a

reference to a mutable (changeable) object.

9/21/11

4

Sept 21, 2011 Sprenkle - CSCI209 19

What is “bad” about this class?

class Farm {	
	. . . 	
	private Chicken headRooster;	

	
	public Chicken getHeadRooster() {	
	 	return headRooster;	
	}	
	. . .	

}	

Sept 21, 2011 Sprenkle - CSCI209 20

Fixing the Problem: Cloning
class Farm {	

	. . . 	
	private Chicken headRooster;	

	
	public Chicken getHeadRooster() {	
	 	return (Chicken) headRooster.clone();	
	}	
	. . .	

}	

• In previous example, could modify returned object’s state	

• Another Chicken object, with the same data as headRooster,  
is created and returned to the user	

• If the user modifies (e.g., feeds) that object, headRooster is not
affected 	

Method is available to all objects	

(inherited from Object)

Sept 21, 2011 Sprenkle - CSCI209 21

Cloning

• Cloning is a more complicated topic than it
seems from the example

• We may examine cloning in more detail later

Sept 21, 2011 Sprenkle - CSCI209 22

Review: Class Design/Organization
• Fields

Ø Chosen first
Ø Placed at the beginning or end of the class defn
Ø Has an access modifier, data type, variable

name, and some optional other modifiers
• Use this keyword to access the object
• Constructors
• Methods

Ø Need to declare the return type
Ø May be static …	

INHERITANCE

Sept 21, 2011 Sprenkle - CSCI209 23 Sept 21, 2011 Sprenkle - CSCI209 24

Inheritance

• Build new classes based on existing classes
Ø Allows code reuse

• Start with a class (parent or super class)
• Create another class that extends or

specializes the class
Ø Called the child, subclass or derived class
Ø Use extends keyword to make a subclass

Examples?	

9/21/11

5

Sept 21, 2011 Sprenkle - CSCI209 25

Child class
•  Inherits all of parent class’s methods and fields

Ø Unless they’re static	
Ø Note on private fields: all are inherited, just can’t

access
• Can also override methods

Ø Use the same name, but the implementation is
different

• Adds methods or fields for additional
functionality

• Use super object to call parent’s method
Ø Even if child class redefines parent class’s method

Sept 21, 2011 Sprenkle - CSCI209 26

Inheritance Rules

• Class (static) fields and methods are not
inherited

• Constructors are not inherited
Ø For example: we will have to define
Rooster(String name, int height,
double weight)  
even though similar constructor in Chicken	

Sept 21, 2011 Sprenkle - CSCI209 27

Rooster class

• Could write class from scratch, but …
• A rooster is a chicken

Ø But it adds something to (or specializes) what a
chicken is/does

• Classic mark of inheritance: is a relationship
• Rooster is child class
• Chicken is parent class

Modify Chicken Class

• Want instance variables to be accessible by
child class
Ø Can’t be private	

• Add new boolean instance variable
is_female	

Sept 21, 2011 Sprenkle - CSCI209 28

Sept 21, 2011 Sprenkle - CSCI209 29

Access Modifiers
• public	

Ø Any class can access
• private	

Ø No other class can access (including child
classes)
•  Must use parent class’s public accessor/mutator

methods
• protected	

Ø Child classes can access
Ø Members of package can access
Ø Other classes cannot access

Access Modes

Accessible
to

Member Visibility
public	 protected	 package	 private	

Defining class Yes Yes Yes Yes
Class in same
package

Yes Yes Yes No

Subclass in
different package

Yes Yes No No

Non-subclass
different package

Yes No No No

Sept 21, 2011 Sprenkle - CSCI209 30

Which access modifier should we use for
the Chicken instance variables?	

Default (if none specified)	

9/21/11

6

protected	
• Accessible to subclasses and members of

package
• Can’t keep encapsulation “pure”

Ø Don’t want others to access fields directly
Ø May break code if you change your

implementation
• Assumption?

Ø Someone extending your class with protected
access knows what they are doing

Sept 21, 2011 Sprenkle - CSCI209 31 Sept 21, 2011 Sprenkle - CSCI209 32

Access Modifiers
•  If you're uncertain which to use (protected,

package, or private), use the most restrictive
Ø Changing to less restrictive later à easy
Ø Changing to more restrictive à may break code

that uses your classes

Sept 21, 2011 Sprenkle - CSCI209 33

Inheritance Rules: Access Modifiers

• Why?
• What would happen if a method in the parent

class is public but the child class’s method
is private?

Access modifiers in child classes	

• Can make access to child class less restrictive but

not more restrictive	

Sept 21, 2011 Sprenkle - CSCI209 34

Inheritance Rules: Access Modifiers

•  If a public method could be overridden as a
protected or private method, child objects would
not be able to respond to the same method calls as
parent objects

• When a method is declared public in the parent, the
method remains public for all that class’s child
classes

•  Remembering the rule: compiler error to override a
method with a more restricted access modifier

Access modifiers in child classes	

• Can make access to child class less restrictive but

not more restrictive	

Look at Modified Chicken Class

Sept 21, 2011 Sprenkle - CSCI209 35 Sept 21, 2011 Sprenkle - CSCI209 36

Rooster class
public class Rooster extends Chicken {	
	public Rooster(String name, 	
	 	int height, double weight) {	
	 	// all instance fields inherited	
	 	// from super class	
	 	this.name = name;	
	 	this.height = height;	
	 	this.weight = weight;	
	 	is_female = false;	
	}	

	
	// new functionality	
	public void crow() {… }	
	…	

	

By default calls default
super constructor with

no parameters	

extends means that Rooster
is a child of Chicken	

9/21/11

7

Sept 21, 2011 Sprenkle - CSCI209 37

Rooster class
public class Rooster extends Chicken {	
	public Rooster(String name, 	
	 	int height, double weight) {	

	
	
	 	super(name, height, weight, false);	
	}	

	
	// new functionality	
	public void crow() { … }	

	
	…	

}	

Call to super constructor must be first line in constructor	

Sept 21, 2011 Sprenkle - CSCI209 38

Constructor Chaining

• Constructor automatically calls constructor of
parent class if not done explicitly
Ø super();	

• What if parent class does not have a
constructor with no parameters?
Ø Compilation error
Ø Forces child classes to call a constructor with

parameters

Sept 21, 2011 Sprenkle - CSCI209 39

Overriding and New Methods
public class Rooster extends Chicken {	

	…	
		
	// overrides superclass; greater gains	
	@Override	
	public void feed() {	
	 	weight += .5;	
	 	height += 2;	
	}	

	
	// new functionality	
	public void crow() {	
	 	System.out.println("Cocka-Doodle-Doo!");	
	}	

	
}	 Sept 21, 2011 Sprenkle - CSCI209 40

Inheritance Tree

• java.lang.Object	
Ø Chicken	
• Rooster	

• Call parent class’s constructor
first
Ø Know you have fields of parent

class before implementing
constructor for your class

Object	

Chicken	

Rooster	

1

2

Sept 21, 2011 Sprenkle - CSCI209 41

Inheritance Tree

• java.lang.Object	
Ø Chicken	
• Rooster	

• No finalize() chaining
Ø Should call super.finalize() inside of
finalize method

Object	

Chicken	

Rooster	

1

2

Sept 21, 2011 Sprenkle - CSCI209 42

Shadowing Parent Class Fields

• Child class has field with same name as
parent class
Ø You probably shouldn’t be doing this!
Ø But could happen

•  Possibly: more precision for a constant

field // this class's field	
this.field // this class's field	
super.field // super class's field	

9/21/11

8

Sept 21, 2011 Sprenkle - CSCI209 43

Multiple Inheritance

•  In Python, it is possible for a class to inherit
(or extend) more than one parent class
Ø Child class has the fields from both parent

classes
• This is NOT possible in Java.

Ø A class may extend (or inherit from) only one
class

Assignment 4
• Start of a simple video game

Ø Game class to run
Ø GamePiece is parent class of other moving objects

• Some less-than-ideal design
Ø Can’t fix until see other Java structures

• Don’t need to understand all of the code, just
some of it

• Create a Goblin class and a Treasure class
Ø Move Goblin and Treasure

Sept 21, 2011 Sprenkle - CSCI209	 44

Copy /home/courses/cs209/handouts/assign4	

