
10/26/11

1

Objectives

• Wrap-up Open-closed principle
•  Code Smells
•  Refactoring

Oct 26, 2011 Sprenkle - CSCI209 1

Who is John McCarthy?

Oct 26, 2011 Sprenkle - CSCI209 2

John McCarthy

•  Father of Lisp and AI
•  1971 Turing Award winner

Oct 26, 2011 Sprenkle - CSCI209 3

“Program designers have a tendency to think of the users as idiots
who need to be controlled. They should rather think of their program
as a servant, whose master, the user, should be able to control it. If
designers and programmers think about the apparent mental qualities
that their programs will have, they'll create programs that are easier
and pleasanter — more humane — to deal with.”	

“He who refuses to do arithmetic
is doomed to talk nonsense.”	

What is the output?

a)  The answer is 1003.3	
b)  The answer is 103.3	
c)  The answer is 100	
d)  Error (no output).

Oct 26, 2011 Sprenkle - CSCI209 4

System.out.println("The answer is " + 	
	 	 	 	100L + 3.3f);	

Project 1

•  In tests, can (probably should) have multiple
assert statements
Ø Method exits (fails) if assert is false
Ø Continues executing remaining asserts

•  Reminder: don’t change the API, package of
Car class

•  Any more questions? Strategy suggestions?

Oct 26, 2011 Sprenkle - CSCI209 5

Review

• Why is coverage not enough?
Ø What can we do to improve testing?

• What is guaranteed in software
development?

• What are some principles of design in
Object-oriented Programming to address the
challenge posed by that guarantee?

Oct 26, 2011 Sprenkle - CSCI209 6

10/26/11

2

Review: Best Practices

•  (DRY): Don’t repeat yourself
•  Single responsibility principle
•  Shy

Ø Avoid Coupling
•  Tell, Don’t Ask
•  Open-closed principle

Oct 26, 2011 Sprenkle - CSCI209 7

Open-Closed Principle
•  Bertrand Meyer

Ø Author of Object-Oriented Software Construction
•  Foundational text of OO programming

•  Design modules that never change after
completely implemented

•  If requirements change, extend behavior by
adding code
Ø Don’t change existing code à won’t create bugs!

Oct 26, 2011 Sprenkle - CSCI209 8

Principle: Software entities (classes, modules,
methods, etc.) should be open for extension

but closed for modification	

Not Open-Closed Principle

• Client uses Server class

Oct 26, 2011 Sprenkle - CSCI209 9

Client	 Server	

public class Client {	
	public void method(Server x) {	
	…	
	}	

}	

Open-Closed Principle

• Client uses AbstractServer class

Oct 26, 2011 Sprenkle - CSCI209 10

Client	 Abstract	
Server	

public class Client {	
	public void method(AbstractServer x) {	
	…	
	}	

}	

Server	

extends Server2	

Or ServerInterface	

Strategic Closure

•  No significant program can be completely
closed

•  Must choose kinds of changes to close
Ø Requires knowledge of users, probability of

changes

•  Goal: Most probable changes should
adhere to open-closed principle

Oct 26, 2011 Sprenkle - CSCI209 11

Heuristics and Conventions
•  Member variables are private

Ø A method that depends on a variable cannot be
closed to changes to that variable

Ø The class itself can’t be closed to it
Ø All other classes should be

•  No global variables
Ø Every module that depends on global variable

cannot be closed to changes to that variable
Ø What happens if someone uses variable in

unexpected way?
Ø Counter examples: System.out, System.in	

Oct 26, 2011 Sprenkle - CSCI209 12

➥ Apply abstraction to parts you
think are going to change	

10/26/11

3

Code Smells

•  Duplicated code
•  Long method
•  Large class
•  Long parameter list
•  Very similar subclasses
•  Too many public

variables
•  Empty catch clauses

•  Switch statements/long
if statements

•  Shotgun surgery
•  Literals
•  Global variables
•  Side effects
•  Using instanceof	

Oct 26, 2011 Sprenkle - CSCI209 13

A hint in the code that something	

could be designed better	

Duplicated Code

• What’s the problem with duplicated code?

• Why do we like it?
Ø What made us write the duplicated code?

Oct 26, 2011 Sprenkle - CSCI209 14

What can we do when we have duplicated code?	

(How can we get rid of the duplicate code?)	

Duplicated Code

• What’s the problem with duplicated code?
Ø If code changes, need to change in every

location
Ø Duplicate effort to test code to make sure it

works
•  More statements for test suite to test!

Oct 26, 2011 Sprenkle - CSCI209 15

Example Code

Oct 26, 2011 Sprenkle - CSCI209 16

public int indexOfPresentItem(String title) {	
	int cur = 0;	
	for (MediaItem i : this.collection) {	
	 	if (i.getTitle().equals(title) && i.isPresent()) 	
	 	 	return cur;	
	 	cur++;	
	}	
	return -1;	

}	
public int indexOfAbsentItem(String title) {	
	int cur = 0;	
	for (MediaItem i : this.collection) {	
	 	if (i.getTitle().equals(title) && !i.isPresent())	
	 	 	return cur;	
	 	cur++;	
	}	

	
	return -1;	

}	

Parameterize	

Duplicated Code

•  Example: same expression in at least one
method of a class
Ø Solution: Extract method
Ø Call method from those two places

•  Example: duplicated code in 2 sibling child
classes

Oct 26, 2011 Sprenkle - CSCI209 17

Parent

Sib1 Sib2

Duplicated Code

•  Example: duplicated code in 2 sibling child
classes
Ø Extract method, put into parent class

•  Eclipse: extract method, pull up
Ø If similar but not duplicate, extract the duplicate

code or parameterize

•  Example: duplicated code in unrelated
classes

Oct 26, 2011 Sprenkle - CSCI209 18

10/26/11

4

Duplicated Code

•  Example: duplicated code in unrelated
classes
Ø Ask: where does method belong?
Ø One solution:

•  Extract class
•  Use new class in classes

Ø Another solution:
•  Keep in one class
•  Other class calls that method

Oct 26, 2011 Sprenkle - CSCI209 19

Refactoring: Solution to Code Smells

•  Example
Ø Creating a single method that replaces 2 or more

sections of similar code
•  Reduces redundant code
•  Makes code easier to debug, test

Oct 26, 2011 Sprenkle - CSCI209 20

After refactoring your code, what should you do next?	

Refactoring: Updating a program to ���
improve its design and maintainability ���

without changing its current functionality significantly	

Long Methods

• What’s the problem with long methods?
• What made us write them?
•  How can we fix them?
• What is an issue with lots of short methods?

Oct 26, 2011 Sprenkle - CSCI209 21

Long Methods: Issues and Solutions

•  Issues:
Ø Hard to understand (see) what method does
Ø Smaller methods have reader overhead

•  Look at code for called methods
•  But, should use descriptive names
•  In Eclipse, use F3 to jump to a method’s definition

•  Solutions:
Ø Find lines of code that go together (may be

identified by a comment) and extract method
Oct 26, 2011 Sprenkle - CSCI209 22

Large Class

• What’s the problem?

Oct 26, 2011 Sprenkle - CSCI209 23

Large Class
•  Issue: Too many instance variables à trying to

do too much
Ø Violates Single Responsibility Principle

•  Solutions:
Ø Bundle groups of variables together into another

class
•  Look for common prefixes or suffixes

Ø  If includes optional instance variables (only
sometimes used), create child classes

Ø Look at how users use the class for ideas of how to
break it up

Oct 26, 2011 Sprenkle - CSCI209 24

Eclipse: Refactor à Extract Class or 	

Extract Superclass	

Possible example: UserInterface	

10/26/11

5

Long Parameter List

•  More difficult to use (do I have everything?)
Ø Example: MediaItem, subclass constructors

•  If method signature changes, have a lot of
places to change

•  Solutions: Use objects
Ø Instead of separate parameters for an object’s

data
Ø Group parameters together

Oct 26, 2011 Sprenkle - CSCI209 25

Eclipse: Refactor à Introduce Parameter Object	

OR Refactor à Change Method Signature	

• What does this code mean?

Oct 26, 2011 Sprenkle - CSCI209 26

// generates a random int so the jewel moves at  
// random intervals	
if (numIters == random.nextInt(100) + 85) {	

	treasure.move(this);	
	numIters = 0;	

}

Literals or Magic Numbers

•  If a number has a special meaning, make it a
constant
Ø Distinguish between 0 and

NO_VALUE_ASSIGNED
Ø If value changes (-1 instead of 0), only one place

to change

Oct 26, 2011 Sprenkle - CSCI209 27

Eclipse: Refactor à Extract Constant	

TO DO

•  Project 1 due Friday

Oct 26, 2011 Sprenkle - CSCI209 28

