
9/26/11

1

Objectives

• Packages
• Wrapper Classes
•  Inheritance

Ø Final methods, fields
Ø Abstract Classes
Ø Interfaces

Sept 26, 2011 Sprenkle - CSCI209 1 Sept 26, 2011 Sprenkle - CSCI209 2

Review
•  How can we verify that an object variable is a certain

type?
•  How can we specify an object variable has a different

type (a derived type)?
•  How does Java decide what method to call on an

object?
Ø Example: chicken[1] = foghorn;	

• What is the syntax for Javadoc comments?
•  How has developing in Eclipse been going?
• Why can Eclipse provide a lot of functionality that

Python can’t?
Ø Example: renaming a class’s method everywhere it is

used

Code Review

• Compare and contrast the following code
snippets:

Sept 26, 2011 Sprenkle - CSCI209 3

for (int i = 1; i <= string.length(); i++){	
 strB.append(string.charAt(string.length() - i));	
}	

for(int i=string.length()-1; i >=0 ; i--) {	
 strB.append(string.charAt(i));	
}	

Eclipse Hints

• After you have written a method, type

before the method, and then hit enter and the
Javadocs template will be automatically
generated for you

• Use command-spacebar for possible
completions

Sept 26, 2011 Sprenkle - CSCI209 4

/**	

PACKAGES

Sept 26, 2011 Sprenkle - CSCI209 5 Sept 26, 2011 Sprenkle - CSCI209 6

Packages

• Hierarchical structure of Java classes
Ø Directories of directories

• Use import to access packages

java	

net	

lang	

util	

Object	

Date	

Fully qualified name: java.lang.String	

String	

9/26/11

2

Standard Practice

• To reduce chance of a conflict between
names of classes, put classes in packages

• Use package keyword to say that a class
belongs to a package:
Ø package java.util;	
Ø First line in class file

• Typically, use a unique prefix, similar to
domain names
Ø com.ibm	
Ø edu.wlu.cs.logic	

Sept 26, 2011 Sprenkle - CSCI209 7

Importing Packages

• Can import one class at a time or all the
classes within a package

• Examples:

Ø * form may increase compile time
•  BUT, no effect on run-time performance

Sept 26, 2011 Sprenkle - CSCI209 8

import java.util.Date;	
import java.io.*;	 Import entire package	

WRAPPER CLASSES

Sept 26, 2011 Sprenkle - CSCI209 9 Sept 26, 2011 Sprenkle - CSCI209 10

Wrapper Classes

• Wrapper class for each primitive type
• Sometimes need an instance of an Object	

Ø To store in HashMaps and other Collections	
•  Include functionality of parsing their

respective data types "
int x = 10; 	
Integer y = new Integer(10);	

Sept 26, 2011 Sprenkle - CSCI209 11

Wrapper Classes
• Autoboxing – automatically create a wrapper

object

• Autounboxing – automatically extract a primitive
type
 	Integer x = new Integer(11); 	
int y = x.intValue();	
int z = x; // implicitly, x is x.intValue(); 	

// implicitly 11 converted to	
// new Integer(11);	
Integer y = 11; 	

Convert right side for whatever is needed on the left	

Effective Java: Unnecessary Autoboxing

• Can you find the inefficiency from object
creation?

• How to fix?

Sept 26, 2011 Sprenkle - CSCI209 12

Long sum = 0L;	
for (long i=0; i < Integer.MAX_VALUE; i++) {	

	sum += i;	
}	
System.out.println(sum);	

Autobox.java	

9/26/11

3

Effective Java: Unnecessary Autoboxing

• Can you find the inefficiency from object
creation?

• How to fix?

Sept 26, 2011 Sprenkle - CSCI209 13

Long sum = 0L;	
for (long i=0; i < Integer.MAX_VALUE; i++) {	

	sum += i;	
}	
System.out.println(sum);	

Constructs 231 Long instances

Autobox.java	

Effective Java: Unnecessary Autoboxing

• Can you find the inefficiency from object
creation?

• How to fix?
• Lessons:

Sept 26, 2011 Sprenkle - CSCI209 14

Long sum = 0L;	
for (long i=0; i < Integer.MAX_VALUE; i++) {	

	sum += i;	
}	
System.out.println(sum);	

• Prefer primitives to boxed primitives	

• Watch for unintentional autoboxing	

Constructs 231 Long instances

Autobox.java	

FINAL KEYWORD

Sept 26, 2011 Sprenkle - CSCI209 15 Sept 26, 2011 Sprenkle - CSCI209 16

Preventing Inheritance
•  Sometimes, you do not want a class to derive from

one of your classes
•  A class that cannot be extended is known as a
final class

•  To make a class final, simply add the keyword
final in front of the class definition:

•  Example of final class: System	

public final class Rooster extends Chicken { 	
	. . . 	

}	

Sept 26, 2011 Sprenkle - CSCI209 17

Final methods

• Can make a method final	
Ø Any class derived from this class cannot override

the final methods

• By default, all methods in a final class are
final methods.

class Chicken {	
	. . . 	
	public final String getName() { . . . }	
	. . . 	

}	

Why would we want to use final?	

What are possible benefits to us, the compiler?	

 Sept 26, 2011 Sprenkle - CSCI209 18

Why final methods and classes?

• Efficiency
Ø Compiler can replace a final method call with

an inline method
•  Does not have to worry about another form of this

method that belongs to a derived class
Ø JVM does not need to determine which method

to call dynamically
• Safety

Ø No alternate form of the method; straightforward
which version of the method you called

9/26/11

4

ABSTRACT CLASSES

Sept 26, 2011 Sprenkle - CSCI209 19 Sept 26, 2011 Sprenkle - CSCI209 20

Abstract Classes

• Some methods defined, others not defined "
• Classes in which not all methods are

implemented are abstract classes "
Ø public abstract class ZooAnimal	

• Blank methods are labeled as abstract	
Ø public abstract void exercise(); 	

Sept 26, 2011 Sprenkle - CSCI209 21

Abstract Classes

• An abstract class cannot be instantiated
Ø i.e., can’t create an object of that class
Ø But can have a constructor!

• Child class of an abstract class can only be
instantiated if it overrides and implements
every abstract method of parent class
Ø If child class does not override all abstract

methods, it is also abstract

Sept 26, 2011 Sprenkle - CSCI209 22

Abstract Classes
• static, private, and final methods

cannot be abstract	
Ø B/c cannot be overridden by a child class

• final class cannot contain abstract
methods

• A class can be abstract even if it has no
abstract methods
Ø Use when implementation is incomplete and is

meant to serve as a parent class for class(es)
that complete the implementation

• Can have array of objects of abstract class
Ø Does dynamic dispatch for methods

Why?

Sept 26, 2011 Sprenkle - CSCI209 23

Examples of abstract classes
• Example 1:

Ø java.net.Socket	
Ø java.net.SSLSocket (abstract)

• Example 2:
Ø java.util.Calendar (abstract)
Ø java.util.GregorianCalendar	

Sept 26, 2011 Sprenkle - CSCI209 24

Summary: Defining Abstract Classes

➨ Define a class as abstract when have
partial implementation

9/26/11

5

Better Organization of Game Classes

• GamePiece should be abstract
Ø No default image associated with it
Ø move method is abstract

Sept 26, 2011 Sprenkle - CSCI209 25

INTERFACES

Sept 26, 2011 Sprenkle - CSCI209 26

Sept 26, 2011 Sprenkle - CSCI209 27

Interfaces

• Like abstract classes with all abstract
methods
Ø A set of requirements for classes to conform to

• Pure specification, no implementation

• Classes can implement one or more
interfaces

Sept 26, 2011 Sprenkle - CSCI209 28

Example of an Interface

• We can call Arrays.sort() on an array
• Arrays.sort() sorts arrays of any object class

that implements the Comparable interface
• Classes that implement Comparable must

provide a way to decide if one object is less
than, greater than, or equal to another object

Sound similar to anything in Python?	

Sept 26, 2011 Sprenkle - CSCI209 29

java.lang.Comparable	

• Any object that is Comparable must have a
method named compareTo()

• Returns:
Ø < 0 for less than
Ø 0 for equals
Ø > 0 for greater than

• Similar to Python’s __cmp__ method

public interface Comparable {	
	int compareTo(Object other);	

}	

Sept 26, 2011 Sprenkle - CSCI209 30

Implementing an Interface

•  In the class definition, specify that the class
will implement the specific interface

• Provide a definition for all methods specified

in interface

public class Chicken implements Comparable	

9/26/11

6

Sept 26, 2011 Sprenkle - CSCI209 31

How to determine Chicken order?

• What if made the Chicken class
Comparable?

Sept 26, 2011 Sprenkle - CSCI209 32

Comparable Chickens
 One way: order by height

What if otherObject is not a Chicken?	

public class Chicken implements Comparable {	
 . . . 	
 public int compareTo(Object otherObject) {	
 	Chicken other = (Chicken)otherObject;	
 	if (height < other.getHeight())	

	 	return –1;	
	if (height > other.getHeight())	
	 	return 1;	
	return 0;	

 }	
}	

Update
Chicken.java	

Sept 26, 2011 Sprenkle - CSCI209 33

Comparable Interface API/Javadoc

• Specifies what the compareTo() method
should do:
Ø Return a –1 if the first object is less than the

second object (passed as a parameter)
Ø Return a 1 if the second object (passed as a

parameter) is less than the first object
Ø Return a 0 if the two objects are equal

• Says what Java library classes implement
Comparable	

Sept 26, 2011 Sprenkle - CSCI209 34

Interface Summary

• Contain only object (not class) methods
• All methods are public	

Ø Implied if not explicit
• Fields are constants that are static and
final	

• A class can implement multiple interfaces
Ø Separated by commas in definition

Sept 26, 2011 Sprenkle - CSCI209 35

Testing for Interfaces

• Use the instanceof operator to see if
an object implements an interface
Ø e.g., to determine if an object can be compared

to another object using the Comparable
interface

if (obj instanceof Comparable) { 	
	// runs if whatever class obj is an instance of	
	// implements the Comparable interface	

}	
else {	

	// runs if it does not implement the interface 	
}	

Sept 26, 2011 Sprenkle - CSCI209 36

Interface Object Variables
• Can use an object variable to refer to an object of

any class that implements an interface
• Using this object variable, can only access the

interface’s methods
•  For example…

Object obj;	
…	
if (obj instanceof Comparable) {	

	Comparable comp = (Comparable) obj;	
	boolean res = comp.compareTo(obj2);	

}	

9/26/11

7

Sept 26, 2011 Sprenkle - CSCI209 37

Interface Definitions

• Do not need to specify methods as public	
Ø Interface methods are public by default

public interface Comparable {	
	int compareTo(Object other);	

}	

Sept 26, 2011 Sprenkle - CSCI209 38

Interface Definitions and Inheritance

• Can extend interfaces
Ø Allows a chain of interfaces that go from general

to more specific
• For example, define an interface for an object

that is capable of moving:

public interface Movable {	
	void move(double x, double y);	

}	

Sept 26, 2011 Sprenkle - CSCI209 39

Interface Definitions and Inheritance

• A powered vehicle is also Movable	
Ø Must also have a milesPerGallon() method,

which will return its gas mileage

public interface Powered extends Movable {	
	double milesPerGallon();	

}	

Sept 26, 2011 Sprenkle - CSCI209 40

Constants in an Interface
• If a variable is specified in an interface, it is

automatically a constant:
Ø public static final variable	

• An object that implements Powered
interface has a constant SPEED_LIMIT
defined

public interface Powered extends Movable {	
	double milesPerGallon();	
	double SPEED_LIMIT = 95;	

}	

Sept 26, 2011 Sprenkle - CSCI209 41

Interface Definitions and Inheritance

• Powered interface extends Movable
interface

• An object that implements Powered interface
must satisfy all requirements of that interface
as well as the parent interface.
Ø A Powered object must have a
milesPerGallon() and move() method

Sept 26, 2011 Sprenkle - CSCI209 42

Multiple Interfaces

• A class can implement multiple interfaces
Ø Must fulfill the requirements of each interface

• But NOT possible with inheritance
Ø A class can only extend (or inherit from) one

class

public final class String implements	
	Serializable, Comparable, CharSequence { …	

9/26/11

8

Sept 26, 2011 Sprenkle - CSCI209 43

Common Uses of Interfaces

• Define constants for multiple classes/
package
Ø Something like global constants
Ø However, not great design practice

• Marker Interface
Ø Interface that is empty
Ø Use to identify an object that has a certain

property
•  E.g., Cloneable	

Using an Interface or Abstract Class

ü Any class can use
ü Can implement multiple

interfaces
•  No implementation
- Implementing methods

multiple times
- Adding a method to

interface will break
classes that implement

•  Contain partial
implementation
- Can’t extend/subclass

multiple classes
ü Add non-abstract

methods without breaking
subclasses

Sept 26, 2011 Sprenkle - CSCI209 44

Interfaces Abstract Classes

Sept 26, 2011 Sprenkle - CSCI209 45

One Option: Use Both!

• Define interface, e.g., MyInterface	
• Define abstract class, e.g.,
AbstractMyInterface	
Ø Implements interface
Ø Provides implementation for some methods

Abstract Classes and Interfaces

•  Important structures in Java
Ø Make code easier to change

• Will return to/apply these ideas throughout
the course

Sept 26, 2011 Sprenkle - CSCI209 46

TODO

• Assignment 5: due Wednesday
• Assignment 6: due Friday

Ø Abstract classes practice
•  Make GameObject an abstract class

Ø Define move as an abstract method
Ø Packages

•  Organize MediaItem classes into a package
Ø Interfaces practice
• MediaItem and subclasses implement
Comparable interface

Sept 26, 2011 Sprenkle - CSCI209 47

