
10/10/11

1

Objectives

•  Collections Framework
Ø Maps
Ø Algorithms
Ø Traversing

•  Enumerated Types
•  Comparators

Oct 10, 2011 Sprenkle - CSCI209 1 Oct 10, 2011 Sprenkle - CSCI209 2

Review

• What are the components of the Java
Collection Framework?

• What collection interfaces and
implementations did we discuss?

• Why do we use interface object variables
instead of implementations in our programs?

•  How do we declare/initialize a new Collection
object?

Review: Collections Framework
•  Interfaces

Ø Abstract data types that represent collections
Ø Collections can be manipulated independently of

implementation
•  Implementations

Ø Concrete implementations of the collection interfaces
Ø Reusable data structures

•  Algorithms
Ø Methods perform useful computations on collections,

e.g., searching and sorting
Ø Polymorphic: same method can be used on many

different implementations of collection interface
Ø Reusable functionality

Oct 10, 2011 Sprenkle - CSCI209 3

MAPS

Oct 10, 2011 Sprenkle - CSCI209 4

Maps

• Maps keys (of type <K>) to values (of
type <V>)

• No duplicate keys
Ø Each key maps to at most one value

"

Oct 10, 2011 Sprenkle - CSCI209 5

Map Interface

• <V> put(<K> key, <V> value)	
Ø Returns old value that key mapped to"

• <V> get(Object key) 	
Ø Returns value at that key (or null if no

mapping)"

• Set<K> keySet() 	
Ø Returns the set of keys"

Oct 10, 2011 Sprenkle - CSCI209 6
And more …	

10/10/11

2

A few Map Implementations
• HashMap	

Ø Fast

• TreeMap	
Ø Sorting
Ø Key-ordered iteration

• LinkedHashMap	
Ø Fast
Ø Insertion-order iteration

Oct 10, 2011 Sprenkle - CSCI209 7

Declaring Maps

•  Declare types for both keys and values
• class HashMap<K,V>	

	

Oct 10, 2011 Sprenkle - CSCI209 8

Keys are Strings	

Values are Lists of Strings	

Map<String, List<String>> map 	
	= new HashMap<String, List<String>>();	

Keys are Strings	

Values are Integers	

Map<String, Integer> map 	
	= new HashMap<String, Integer>();	

Pet Survey

• What is the best way to keep track of
people’s votes for their favorite pet—dog,
cat, bird, fish, snake, other?

• What are the options? Tradeoffs of the
options?

Oct 10, 2011 Sprenkle - CSCI209 9

PetSurvey3.java	

Implement: castVote, validVote, getAnimals	
ALGORITHMS

Oct 10, 2011 Sprenkle - CSCI209 10

Collections Framework’s Algorithms

•  Polymorphic algorithms
•  Reusable functionality
•  Implemented in the Collections class

Ø Static methods, 1st argument is the collection

Ø Similar to Arrays class, which operates on
arrays

Oct 10, 2011 Sprenkle - CSCI209 11

Overview of Available Algorithms

•  Sorting – optional Comparator	
•  Shuffling
•  Searching – binarySearch
•  Routine data manipulation: reverse*, copy*,

fill*, swap*, addAll
•  Composition – frequency, disjoint
•  Finding min, max

Oct 10, 2011 Sprenkle - CSCI209 12

* Only Lists	

10/10/11

3

TRAVERSING COLLECTIONS

Oct 10, 2011 Sprenkle - CSCI209 13

Two Ways to Iterate over Collections

•  For-each loop
•  Iterator

Oct 10, 2011 Sprenkle - CSCI209 14

Traversing Collections: For-each Loop

•  For-each loop:

•  Valid for all Collections	
Ø Maps (and its subclasses) are not
Collections	

Ø But, Map’s keySet() is a Set and values()
is a Collection	

Oct 10, 2011 Sprenkle - CSCI209 15

for (Object o : collection) 	
 System.out.println(o);	

Traversing Collections: Iterator

• Iterator: Java Interface
•  To get an Iterator from a Collection

object:

Ø Returns an Iterator over the elements in this
collection

Ø Example:

Oct 10, 2011 Sprenkle - CSCI209 16

Iterator<E> iterator()

Iterator<String> iter = keys.iterator();	

Oct 10, 2011 Sprenkle - CSCI209 17

Iterator: Like a Cursor

•  Always between two elements

Iterator<Integer> i = list.iterator();	
while(i.hasNext()) {	

	int value = i.next();	
	… 		

}

Iterator API

• <E> next()	
Ø Get the next element

•  boolean hasNext() 	
Ø Are there more elements?

•  void remove() 	
Ø Remove the previous element
Ø Only safe way to remove elements during

iteration
•  Not known what will happen if remove elements

in for-each loop
Oct 10, 2011 Sprenkle - CSCI209 18

10/10/11

4

Oct 10, 2011 Sprenkle - CSCI209 19

Polymorphic Filter Algorithm

static void filter(Collection c) {	
 	Iterator i = c.iterator();	

	while(i.hasNext()) {	
	 	// if the next element does not	
	 	// adhere to the condition, remove it 	
	 	if (! condition(i.next())) {	

 	 	i.remove();	
	 	}	

 	}	
}	

Polymorphic: works regardless of Collection implementation	

Oct 10, 2011 Sprenkle - CSCI209 20

Traversing Lists: ListIterator	
•  Methods to traverse list backwards too

Ø hasPrevious()	
Ø previous()	

•  To get a ListIterator:
Ø listIterator(int position)	

•  Pass in size() as position to get at end of list

Key difference	

Oct 10, 2011 Sprenkle - CSCI209 21

Enumeration	
•  Legacy class
•  Similar to Iterator	
•  Example methods:

Ø boolean hasMoreElements() 	
Ø Object nextElement() 	

•  Longer method names
•  Doesn’t have remove operation

How Not to Iterate

•  Don’t use get to access List	
Ø If implementation a LinkedList, performance

is reeeeeally slow

Oct 10, 2011 Sprenkle - CSCI209 22

for (int i = 0; i < list.size(); i++) {	
	count += list.get(i); // do something	

}

Oct 10, 2011 Sprenkle - CSCI209 23

Synchronized Collection Classes

•  For multiple threads sharing same collection
•  Slow down typical programs

Ø Avoid for now
•  e.g., Vector, Hashtable	
•  See java.util.concurrent	

Another example: StringBuffer is synchronized, ���
whereas StringBuilder is not	

Benefits of Collections Framework

Oct 10, 2011 Sprenkle - CSCI209 24

10/10/11

5

Benefits of Collections Framework
•  Provides common, well-known interface

Ø  Allows interoperability among unrelated APIs
Ø  Reduces effort to learn and to use new APIs for different

implementations
•  Reduces programming effort: provides useful, reusable

data structures and algorithms
•  Increases program speed and quality: provides high-

performance, high-quality implementations of data
structures and algorithms; interchangeable
implementations à tuning

•  Reduces effort to design new APIs: use standard
collection interface for your collection

•  Fosters software reuse: New data structures/algorithms
that conform to the standard collection interfaces are
reusable

Oct 10, 2011 Sprenkle - CSCI209 25

TODO

•  Assignment 8: Due NEXT Wednesday
Ø Practice with Generics, Collections, User

interface

Oct 10, 2011 Sprenkle - CSCI209 26

