
9/16/11

1

Objectives

• Object-oriented programming in Java
Ø Encapsulation
Ø Access modifiers
Ø Using others’ classes
Ø Defining own classes

Sept 16, 2011 Sprenkle - CSCI209 1 Sept 16, 2011 Sprenkle - CSCI209 2

Review
• What is the keyword for a constant value?
• What does static mean?
• What two Java classes did we discuss?
• What do the following control structures look like

in Java?
Ø  If, While, For

• What is the syntax for logic operators in Java?
• How do you create an array?
• How do you determine the size of an array?
• How can you sort an array?

Assign0 Feedback

• Terminology clarification
Ø Declaration: int x = 3;
Ø Definition: x = 3;	

• Comment for author: @author Dr. Seuss	
Ø Will make more sense when we talk more about

JavaDocs
• 2 votes for Katy Perry

Sept 16, 2011 Sprenkle - CSCI209 3

What does this code do?

Sept 16, 2011 Sprenkle - CSCI209 4

if (x > 4) ;	
	System.out.println(“x is ” + x);	

What does this code do?

• ; is a valid statement
• Print statement always executes
•  Indentation doesn’t matter

Sept 16, 2011 Sprenkle - CSCI209 5

if (x > 4) ;	
	System.out.println(“x is ” + x);	

Sept 16, 2011 Sprenkle - CSCI209 6

Control Flow: foreach Loop
•  Introduced in Java 5

Ø Sun calls “enhanced for” loop
•  Iterate over all elements in an array (or

Collection)
Ø Similar to Python’s for loop
int[] a;	
int result = 0; 	
. . .	
for (int i : a)	
{	
 result += i; 	
}

for each int element i in the array a
The loop body is visited once for each	

 element of a.

“in”	

http://download.oracle.com/javase/1,5.0/
docs/guide/language/foreach.html	 ArrayLength.java	

9/16/11

2

Review: Object-Oriented Programming

• What is OO programming?
Ø Components?

• Benefits?

Sept 16, 2011 Sprenkle - CSCI209 7 Sept 16, 2011 Sprenkle - CSCI209 8

Review: Object-Oriented
Programming

• Programming that models real life
Ø Consider an ATM…

•  Implicitly agreed upon interface between user and
the ATM

•  What, not how
Ø Objects each have own role/responsibility

• As opposed to functional programming
Ø A list of instructions to the computer

Sept 16, 2011 Sprenkle - CSCI209 9

Objects

• How object does something doesn’t matter
Ø Example: if object sorts, does not matter if uses

merge or quick sort
• What object does matters (its functionality)

Ø What object exposes to other objects
Ø Referred to as “black-box programming”

Object	

•  Has public interface that others can use	

•  Hides state from others	

Encapsulation
• Encapsulation: Combining data and

behavior (functionality) into one package (the
object) and hiding the implementation of the
data from the user of the object

Sept 16, 2011 Sprenkle - CSCI209 10

Object	

Sept 16, 2011 Sprenkle - CSCI209 11

Discussion
• What is the problem with white-box

programming?
• What if implementation changes?

Ø For scalability, efficiency, …

Object	

Object	

Can see and manipulate
object’s internals	

Classes & Objects
• Classes define template from which objects are

made
Ø “Cookie cutters”
Ø Define state – data, usually private
Ø Define behavior – an object’s methods, usually

public
•  Exceptions?

• Many objects can be created for a class
Ø Object: the cookie!
Ø Ex: Many Mustangs created from Ford’s “blueprint”
Ø Object is an instance of the class

Sept 16, 2011 Sprenkle - CSCI209 12

9/16/11

3

Sept 16, 2011 Sprenkle - CSCI209 13

Classes, Objects, Methods
• An object’s state is stored in instance fields
• Method: sequence of instructions that

access/modify an object’s data
Ø Accessor: accesses (doesn’t modify) object
Ø Mutator: changes object’s data

Sept 16, 2011 Sprenkle - CSCI209 14

Access Modifiers

• A public method (or instance field) means
that any object of any class can directly
access the method (or field)
Ø Least restrictive

• A private method (or instance field)
means that any object of the same class can
directly access this method (or field)
Ø Most restrictive

• Additional access modifiers will be discussed
with Inheritance In general, what access modifiers will we

use for methods? For instance fields?	

Sept 16, 2011 Sprenkle - CSCI209 15

Constructors

• Constructor: a special method that
constructs and initializes an object
Ø After construction, can call methods on object

• Constructors have the same name as their
classes

Sept 16, 2011 Sprenkle - CSCI209 16

Constructing objects using new	
• Given the File constructor

File(String pathname)
• Create a new File object using new

keyword
Ø Recall new means allocates memory

File myFile = new File("debug.out");	

Type/Classname	

Effective Java: Code Inefficiency

• Avoid creating unnecessary objects:

• Do this instead:

Sept 16, 2011 Sprenkle - CSCI209 17

String s = new String(“text”); // DON’T DO THIS	

String s = “text”;	

Why?	

Calling Methods

• Similar to Python

• Examples with String and System
classes

• To call static methods, use

Sept 16, 2011 Sprenkle - CSCI209 18

<objectname>.<methodname>(<parameters>);	

<classname>.<methodname>(<parameters>);	

9/16/11

4

Using Other’s Classes: Random	
• Problem: write a Java program that prints
“heads” or “tails” at random.

• Look at API of Random	
Ø What functionality is available?
Ø How do you use the class?

Sept 16, 2011 Sprenkle - CSCI209 19 CoinFlip.java	

CREATING YOUR OWN
CLASSES

Sept 16, 2011 Sprenkle - CSCI209 20

Classes and Objects

• Java is pure object-oriented programming
Ø All data and methods in a program must be

contained within a class

• But, for data, can use objects as well as
primitive types (e.g., int, float, char)

Sept 16, 2011 Sprenkle - CSCI209 21 Sept 16, 2011 Sprenkle - CSCI209 22

Example: Chicken class

• State
Ø Name, weight, height

• Behavior
Ø Accessor methods
• getWeight, getHeight, getName	
•  Convention: “get” for “getter” methods

Ø Mutator methods
• feed: adds weight and height when bird eats
• setName	

General Java Class Structure

Sept 16, 2011 Sprenkle - CSCI209 23

public class ClassName {	
	
 // --------- INSTANCE VARIABLES ---------------	
 // define variables that represent object’s state	
	private int inst_var;	

	
	// --------- CONSTRUCTORS ---------------	
	public ClassName() {	
	 	// initialize data structures	
	}	

	
	// ----------- METHODS ------------	
	public int getInfo() {	
	 	return inst_var;	
	}	

}	
Note: instance variables are private  
and methods are public	

Sept 16, 2011 Sprenkle - CSCI209 24

Example: Chicken class

• State
Ø Name, weight, height

• Behavior
Ø Accessor methods
• getWeight, getHeight, getName	
•  Convention: “get” for “getter” methods

Ø Mutator methods
• feed: adds weight, height
• setName	

Discussion: data types
for state variables? 	

9/16/11

5

Instance Variables: Chicken.java	

Sept 16, 2011 Sprenkle - CSCI209 25

public class Chicken {	
	
 // --------- INSTANCE VARIABLES ---------------	
	private String name; 	
	private int height; // in cm	
	private double weight; // in lbs	

	

All instance variables are private

Constructor: Chicken.java	

Sept 16, 2011 Sprenkle - CSCI209 26

public class Chicken {	
	
 // --------- INSTANCE VARIABLES ---------------	
	private String name; 	
	private int height; // in cm	
	private double weight;	

	
	// --------- CONSTRUCTORS ---------------	
	public Chicken(String name, int height,	
	 	 	 	 	 	 	double weight) {	
	 	this.name = name;	
	 	this.height = height;	
	 	this.weight = weight;	
	}	
	…	 this: Special name for the constructed object, ���

like self in Python (differentiate from parameters)	

Type and name for
each parameter	

Constructor name same as class’s name	

Sept 16, 2011 Sprenkle - CSCI209 27

Example: Chicken class
• State

Ø Name, weight, height
• Behavior

Ø Accessor methods
• getWeight, getHeight, getName	
•  Convention: “get” for “getter” methods

Ø Mutator methods
• feed: adds weight, height
• setName	

Discussion: What are the
methods’ input (parameters) ���
and output (what is returned)? 	

Methods: Chicken.java	

Sept 16, 2011 Sprenkle - CSCI209 28

 …	
	
// --------- Getter Methods ---------------	

	public String getName() {	
	 	return name;	
	}	

	
// --------- Mutator Methods ---------------	

	public void feed() {	
	weight += .2;	
	height += 1;	

	}	
	…	

}	

Note that you don’t have to use this
when variables are unambiguous	

Chicken object’s
instance variables	

Type the method returns	

Sept 16, 2011 Sprenkle - CSCI209 29

Constructing objects	
• Given the Chicken constructor

Chicken(String name, int height, double
weight)

create three chickens
Ø “Fred”, weight: 2.0, height: 38
Ø “Sallie Mae”, weight: 3.0, height: 45
Ø “Momma”, weight: 6.0, height: 83

Using Classes You Wrote

•  In Chicken.java,
Ø Construct chickens
Ø Call methods on the constructed objects

Sept 16, 2011 Sprenkle - CSCI209 30 Chicken.java	

9/16/11

6

Sept 16, 2011 Sprenkle - CSCI209 31

Object References

• Variable of type object: value is memory
location

one =

two =

Chicken

weight =

height =

name =

2.0

38

“Fred”

Chicken

weight =

height =

name =

3.0

45

“Sallie Mae”

Memory
Location	

Sept 16, 2011 Sprenkle - CSCI209 32

Object References

• Variable of type object: value is memory
location

one = 	

two = 	

If I haven’t called the constructor, only
declared the variables: 	

 Chicken one;	
	Chicken two;	

Both one and two are equal to null	

Sept 16, 2011 Sprenkle - CSCI209 33

Null Object Variables
• An object variable can be explicitly set to
null
Ø Means that the object variable does not currently

refer to any object

• Can test if an object variable is set to null
Chicken chick = null;	
 … … … 	
if (chick == null) { 	

	. . . 	
}	

Sept 16, 2011 Sprenkle - CSCI209 34

Multiple Object Variables

• More than one object variable can refer to the
same object

Chicken

weight =

height =

name =

3.0

45

“Sallie Mae”

sal =

sal2 =

Chicken sal = new Chicken(“Sallie Mae”);	
Chicken sal2 = sal;	

Sept 16, 2011 Sprenkle - CSCI209 35

What happens here?
Chicken x, y;	
Chicken z = new Chicken("baby", 1.0, 5);	
x = new Chicken("ed", 10.3, 81);	
y = new Chicken("mo", 6.2, 63);	
Chicken temp = x;	
x = y;	
y = temp;	
z = x;	

Sept 16, 2011 Sprenkle - CSCI209 36

What happens here?
Chicken x, y;	
Chicken z = new Chicken("baby", 1.0, 5);	
x = new Chicken("ed", 10.3, 81);	
y = new Chicken("mo", 6.2, 63);	
Chicken temp = x;	
x = y;	
y = temp;	
z = x;	

Whoops! Lost “baby” chicken!	

Memory leak!	

Luckily Java has garbage collectors
to clean up the memory leak	

9/16/11

7

TODO

• Assignment 2:
Ø Part 1: Debugging
Ø Part 2: Writing a Birthday class (will build on

later)
Ø Due Monday before class

• Extra Credit Opportunity: Monday
Ø Sylvia Earle: “The World is BLUE!”

Sept 16, 2011 Sprenkle - CSCI209 37 Sept 16, 2011 Sprenkle - CSCI209 38 38

More on Constructors

• A class can have more than one constructor
Ø Whoa! Let that sink in for a bit

• A constructor can have zero, one, or multiple
parameters

• A constructor has no return value
• A constructor is always called with the new

operator

Example of Overloaded Constructors

Sept 16, 2011 Sprenkle - CSCI209 39

Also saw an example in java.util.Random

Sept 16, 2011 Sprenkle - CSCI209 40

Constructor Overloading
• Allowing > 1 constructor (or any method) with

the same name is called overloading
Ø Constraint: Each of the methods that have the

same name must have different parameters so
that compiler can distinguish between them
•  “different” à Number and/or type

• Compiler handles overload resolution
Ø Process of matching a method call to the correct

method by matching the parameters
• No function overloading in Python

40 overload.py	
Why isn’t overloading possible in Python?	

Default Initialization

•  If instance field is not explicitly set in
constructor, automatically set to default value
Ø Numbers set to zero
Ø Booleans set to false
Ø Object variables set to null	
Ø Local variables are not assigned defaults

• Do not rely on defaults
Ø Code is harder to understand

Sept 16, 2011 Sprenkle - CSCI209 41 41

Clean Code Recommendation:	

Set all instance fields in the constructor(s)	

Sept 16, 2011 Sprenkle - CSCI209 42

Explicit Field Initialization

•  If more than one constructor needs an
instance field set to same value, the field can
be set explicitly in the field declaration

class Chicken {	
	private String name = "";	
	. . .	

}	

Set value here for
all constructors	

9/16/11

8

Sept 16, 2011 Sprenkle - CSCI209 43

Explicit Field Initialization

• Or in a static method call
class Employee {	

	private int id = assignID();	
	. . .	
	private static int assignID() {	
	 	int r = nextID;	
	 	nextID++;	
	 	return r;	
	}	

}	

More on static later…	

Sept 16, 2011 Sprenkle - CSCI209 44 Sprenkle - CS209 44

Explicit Field Initialization

• Explicit field initialization happens before any
constructor runs

• A constructor can change an instance field
that was set explicitly

•  If the constructor does not set the field
explicitly, explicit field initialization is used
class Chicken {	

	private String name = "";	
	public Chicken(String name, …) {	
	 	this.name = name;	
	 	…	
	}	

…	

Change explicit
field initialization	

Create Another Constructor for Chicken
class
• All Chickens start small, only have a name

Sept 16, 2011 Sprenkle - CSCI209 45

Benefits of Static Typing

• Look at dynamic_typing.py	

• Discussion questions
Ø What is the type of data at the end of the

program?
Ø How difficult is this program to understand?
Ø If you had to debug this program, how easy/

difficult would it be?
Ø What is a benefit of dynamic typing?

Sept 16, 2011 Sprenkle - CSCI209 46

alternative_dynamic_typing.py	

Benefits of Static Typing

• Easier to remember type of variable
Ø Know operations that can be executed on a

variable of a certain type
• Compiler can check that you’re only using

valid operations for this type

• More benefits later this semester

Sept 16, 2011 Sprenkle - CSCI209 47

More Why Java?

• More structure emphasizes/requires better
design

Sept 16, 2011 Sprenkle - CSCI209 48

9/16/11

9

Sept 14, 2011 Sprenkle - CSCI209 49

Assign 1: java.util.Arrays	
• Arrays is a class in java.util	
• Methods for sorting, searching,
deepEquals, fill arrays

• To use class, need import statement
Ø Goes at top of program, before class definition

import java.util.Arrays;	

ArraysExample.java	

