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Objectives 

•  Design Patterns 
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Animation Review 

• What type of object do we use to “draw” in 
Java? 
Ø What are some things we can do? 
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My German Word of the Day: die Benutzeroberfläche 

DESIGN PATTERNS 
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Design Pattern 

•  Not a finished design that can be 
transformed directly into code 

•  Description or template for how to solve a 
problem that can be used in many different 
situations 
Ø “Experience reuse”, rather than code reuse 
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General reusable solution to a commonly 
occurring problem in software design	



Defined Design Patterns 

•  Software best practices 
•  Catalogued and discussed in Design 

Patterns: Elements of Reusable Object-
Oriented Software  
Ø Written by the “Gang of Four”:  

Erich Gamma, Richard Helm, Ralph Johnson 
and John Vlissides 
•  Erich Gamma also co-wrote JUnit framework 

Ø Didn’t design the patterns; identified them 
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Applying Design Patterns 

1. Recognize problem as one that can be 
solved by a design pattern 

2. Apply pattern to your problem 
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Danger: over-applying design patterns	


Ø  Fall back: Identify and resolve code smells	
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Motivating Example 

•  Birds 
Ø Various flying behaviors (some fly, some don’t) 
Ø Make different sounds 
Ø Examples: Duck, Penguin, Hummingbird, 

Ostrich, Chicken, Oriole, … 
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How can we represent different birds?	



Designing Flexible Behaviors 

•  Include behaviors in abstract Bird class 
Ø FlyBehavior object has performFly() 

method 
Ø SoundBehavior object has makeSound() 

method 

•  Could have setter methods in Bird class to 
change these 
Ø Example: bird’s wings get clipped 
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Designing Flexible Behaviors 
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public abstract class Bird {	
	protected FlyBehavior flyB;	
	protected SoundBehavior soundB;	
		
	public Bird() {	
	 	…	
	}	
		
	public void performSound() {	
	 	soundB.makeSound();	
	}	

	
	public void performFly() {	
	 	flyB.performFly();	
	} 	

} 	

Designing Flexible Behaviors 
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public class Duck {	
	//Recall: protected FlyBehavior flyB;	
	//Recall: protected SoundBehavior soundB;	
		
	public Duck() {	
		

	
	}	
	…	

} 	

What do we need to 
do in here?	



Designing Flexible Behaviors 
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public class Duck {	
	 		
	public Duck() {	
	 	flyB = new FlyHighBehavior();	
	 	soundB = new QuackBehavior();	
	}	
		

	
} 	 Do we need to do anything else to this class, 

with respect to fly and sound behavior? 	



How Do We Implement… 

•  Hummingbird? 
•  Penguin? 
•  Ostrich? 
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Class Diagram 
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Bird	
FlyBehavior	

SoundBehavior	
performSound()	
performFly()	

	

Duck	

UML Diagram	



NoFly	
performFly()	

FlyBehavior	
performFly()	

FlyHigh	
performFly()	

SoundBehavior	
makeSound()	

interface	



(Implementations of interface …)	



interface	



asso
ciati

on	


Unified Modeling Language (UML) 

•  Standardized general-purpose modeling 
language 
Ø Graphical language for visualizing, specifying 

and constructing the artifacts of a software 
system  

•  Includes a set of graphical notation 
techniques to create abstract models of 
specific systems 

•  Used in designing a large system 
Ø Focus on big picture, not the code 
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Design Principle:���
Favor Composition Over Inheritance	


•  Composition 

Ø Using other objects in your class 
Ø “Delegate” responsibilities to this object 
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Why is composition preferred over inheritance?	



Design Principle:���
Favor Composition Over Inheritance	


•  Composition 

Ø Using other objects in your class 
Ø “Delegate” responsibilities to this object 

 
Ø Inheritance à dependence on parent class 

•  Only want to depend on things you know won’t 
change (higher stability) 

Ø Composition: Provide different behaviors for your 
class by plugging in new object 

Nov 14, 2011 Sprenkle - CSCI209 16 

Why is composition preferred over inheritance?	



Another Solution: Using Interfaces 

• We could have a Flyable interface with a 
performFly() method and a  
Chirpable interface with a chirp() 
method 

•  Then, each bird class would implement 
Flyable and Chirpable, as appropriate 
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Pros and cons of this solution?	



Pros and Cons of Interface Solution 

• We could have a Flyable interface with a 
performFly() method and a  
Chirpable interface with a chirp() 
method 

•  Pros: Using an interface à more flexible 
Ø Depending on interface instead of 

implementation 
•  Con: Duplicated code, implement in each 

class 
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Strategy Pattern 
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Bird	
FlyBehavior	

SoundBehavior	
performSound()	
performFly()	

	

Duck	

UML Diagram	



NoFly	
performFly()	

FlyBehavior	
performFly()	

FlyHigh	
performFly()	

SoundBehavior	
makeSound()	

interface	



(Implementations of interface …)	



interface	



Strategies	
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ciati
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Design Pattern: Strategy 

•  Defines a family of algorithms, encapsulates 
each one, and makes them interchangeable 

•  Lets algorithm/behavior vary independently 
from clients that use it 
Ø Allows behavior changes at runtime 

•  Design Principle: 
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Favor composition over inheritance	



What Are the Benefits of the Strategy 
Pattern? 
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What Are the Benefits of the Strategy 
Pattern? 
•  Uses delegation 

Ø Reduces Bird’s responsibilities 
•  Delegate some responsibilities to 
SoundBehavior and FlyBehavior	

Ø Reduces Bird’s code 
•  Easy swap of different strategy 

Ø Because have one interface, can easily plug in 
different behavior/implementation 
•  Coding to interface, not implementation 
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Pattern in its own right	



Discussion: Applying Design Patterns 

• When should we apply the delegation 
pattern? 
Ø Example, if X, then we should apply the pattern. 

• When should we apply the strategy pattern? 

• When will we know we’ve gone too far 
(overapplying)? 
Ø What are some symptoms to look for? 
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Discussion: Applying Design Patterns 
•  When should we apply the delegation pattern? 

Ø When we know that the requirements or implementations 
for a responsibility are likely to change 
•  Change: Number/types of birds; types of behaviors; or 

lower-level implementation details 
•  When should we apply the strategy pattern? 

Ø When there are lots of desired behaviors for one 
responsibility 

•  When will we know we’ve gone too far 
(overapplying)?  What are some symptoms to look 
for? 
Ø  “Too small” classes à don’t do anything 
Ø Have many more strategies than necessary 
Ø  “Speculative generality” 
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Design Pattern: Factory Methods 

•  Allows creating objects without specifying 
exact (concrete) class of created object  

•  Often used to refer to any method whose 
main purpose is creating objects 

•  How it works: 
1.  Define a method for creating objects 
2.  Child classes override method to specify the 

derived type of product that will be created 
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Factory Method Pattern 
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Product	 Creator	
factoryMethod()	
anOperation()	

ConcreteProduct	 ConcreteCreator	
factoryMethod()	

UML Class Diagram	



association	



interface	

 interface	



implementation	

implementation	



Mapping Factory Design Pattern 
to Screen Savers 
•  How does the screen saver application use 

factory methods? 

• What would be the alternative solution? 

• What problems are the factories addressing? 
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Mapping Factory Design Pattern 
to Screen Savers 
•  How does the screen saver application use 

factory methods? 
• What would be the alternative solution? 
• What problems are the factories addressing? 

Ø Delegate creation of concrete Movers 
•  Likely to change 
•  Encapsulate change in factory 

Ø Using abstraction instead of specifying concrete 
classes 
•  Reduces dependencies to concrete classes 
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Thoughts 

•  Didn’t need to know design pattern to 
understand code 
Ø Helps to know the terminology to understand 

the naming 

•  Design principles all come down to  
where there is change, use abstraction 
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Dependency Inversion Principle 

•  High-level components should not depend on 
low-level components 
Ø Both should depend on abstractions 

•  Abstractions should not depend upon details.  
Details should depend upon abstractions 

•  “Inversion” from the way you think 
•  Other techniques besides Factory Method for 

adhering to principle 
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Depend upon abstractions. 
Do not depend upon concrete classes. 
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Dependency Inversion Principle 

•  How would we build/design the screen saver 
application? 
Ø Know we need to view/display a screen saver 

•  Buttons, slider, objects that move 
•  Top-down 

Ø Know we need to create a bunch of types of 
screen savers 
•  Abstraction 
•  Bottom-up 
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One Option for Screen Saver 
Dependencies 
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Bouncer	 Walker	

GUI	

Racer	

High-level component is dependent on concrete classes.	


If implementations change, GUI may have to change	



Our Screen Saver Dependencies 
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Mover	 Canvas	 Factory	

Bouncer	 BouncerFactory	

ButtonPanel	

Screen Saver Dependencies 
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Mover	 Canvas	 Factory	

Bouncer	 BouncerFactory	

ButtonPanel	

Note: dependencies 
are on abstractions 

and classes unlikely to 
change 	



Guidelines to Follow DIP 
•  No variable should hold a reference to a 

concrete class 
Ø Using new à holding reference to concrete class 
Ø Use factory instead 

•  No class should derive from a concrete class 
Ø Why? Depends on a concrete class 
Ø Derive from an interface or abstract class instead 

•  No method should override an implemented 
method of its base class 
Ø Base class wasn’t an abstraction 
Ø Those methods are meant to be shared by 

subclasses 
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What’s the problem with following ���
all of these guidelines? 	



Dependency Inversion Principle 
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Depend upon 
abstractions 
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To Do 

•  Assign 11: Screensavers due Friday 
•  Extra Credit: Naomi Oreskes talk, 5:30 

Stackhouse 
Ø Answer questions on Sakai 

•  3 most important points of her talk 
•  most surprising thing she mentioned 
•  at least one question that you wondered during 

the talk 
•  one problem that she posed that a computer 

scientist could help solve; tell me a little about 
your proposed solution 
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