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Objectives 

•  Version Control 
•  Parsing commands 
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Review 

• Who are your teammates for the final 
project? 

• What is the final project? 
•  How does an interpreter execute a 

programming language? 
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SLogo Project Overview 

•  Goal: Create an IDE for simplified version of 
Logo 

•  Logo: programming language designed to 
teach children to program 
Ø Low floor, high ceiling 
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Interpreting User’s Input 
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Problems in Collaborating on Code 
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Design 

Evaluate Implement 

Creating many 
prototypes	



- What if don’t like 
recent prototype?	



Need to go back to 
older version	



•  Different parts (e.g., user 
interface and backend)	



•  > 1 developer implementing 
concurrently	



- What if one introduces a 
bug?	



Developers	
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Version Control Features 
•  Synchronization 

Ø  Lets people share files 
Ø Stay up-to-date with the latest version 

•  Backup and Restore 
Ø Files are saved as they are edited 
Ø Revert to a specific version/checkpoint 

•  Track changes to code 
Ø Save comments explaining why change happened 
Ø Stored in the VCS, not the file 
Ø Track how, why a file evolves over time 

•  Track ownership 
Ø Tags every change with the name of the person who 

made it 
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Version Control Features 
•  Short-term undo 

Ø Messed up a file?  Go back to the last good version 
•  Long-term undo 

Ø Created a bug a year ago?  Jump back to see 
change you made. 

•  Sandboxing 
Ø Making a big change?  Make temporary changes in 

isolated area, test, work out kinks before “checking 
in” your changes 

•  Branching and merging 
Ø Branch a copy of your code into a separate area, 

modify it in isolation (tracking changes separately) 
Ø Later, merge work into common area 
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Version Control Systems 

•  Popular Version Control Systems 
Ø CVS, Subversion, Git, … 

•  Terms used are common for most version 
control systems 

• We will use Subversion with Subclipse 
Ø Mark Phippard, a W&L grad works on both 

•  Director of the Subversion engineering team at 
CollabNet, the company that founded Subversion 

Nov 18, 2011 Sprenkle - CSCI209 9 

Using Version Control 

Nov 18, 2011 Sprenkle - CSCI209 10 

Repository 

•  Keeps public copy of code: 
versions of all files, 
comments about changes, 
who made changes 

•  Have own copy of codeà 
“Working Copy” 

•  Checkout, commit, 
update code 

Users 

Code 

Code 

Using Version Control: checkout	
•  To start, need to checkout your working 

copy of the code 
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Using Version Control: commit	
•  After you make changes that you want others 

to see, commit your version 
Ø Include comments about what changes you 

made and why 
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Repository 

•  Checks for conflicts 
•  Updates each modified file 
•  Records comments with 

updated files 
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Using Version Control: commit	
•  After you make changes that you want others 

to see, commit your version 
Ø Include comments about what changes you 

made and why 
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Repository 

•  Checks for conflicts 
•  Updates each modified file 
•  Records comments with 

updated files 

commit	

Code* comments? 
comments 

Code 

Code’ 

Other people’s code 
doesn’t change 

Using Version Control: commit	
•  After you make changes that you want others 

to see, commit your version 
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Repository 

•  Checks for conflicts: 
code conflicts with recent 
changes in the public copy 

commit	
Code* 

conflicts 
Code* 

•  Update code, fix 
conflicts 

•  Try commit again 

Using Version Control: update	
•  To see the current version of the code, 
update your repository 
Ø Resolve conflicts 
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Repository 
update	

Code 
code 

Using Version Control: add, 
delete	
•  You need to add and delete files and 

directories to the repository, then commit	
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Repository 
commit	

Code 

•  Add, delete files 
and directories 

•  Commit 

•  Create new records for added files 
•  Close records for deleted files 

•  Files not deleted from repository 

Version Control Advice 

•  Does not eliminate need for communication 
Ø Process becomes much more difficult if 

developers do not communicate 
•  Before picking up again, update your 

working copy 
•  Commit only after you’ve tested code and 

you’re fairly sure it works 
Ø Write descriptive comments so your team 

members know what you did and why 
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Code Organization 

•  Organize code into appropriate structure 
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MyProject	
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SUBCLIPSE 
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Subclipse 

•  Plugin for Eclipse 
•  Installation: 

Ø Help à Install New Software 
Ø Create remote site: 

•  Name: Subclipse 
• http://subclipse.tigris.org/
update_1.6.x	

•  Select all those packages 
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Checking Out Code in Eclipse 
•  In SVN Repository view, create a new SVN 

repository: 
Ø File à New à Other à SVN 
Ø Repository:  
file:///home/courses/cs209/shared/
svn_repo/	

Ø  If you want to connect from your home computer: 
svn+ssh://knuth.cs.wlu.edu/home/courses/
cs209/shared/svn_repo/	

•  Checkout SLogo<gradyear>/trunk from 
repository 
Ø As a new Java project (Wizard) 
Ø Java project, named SLogo 
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No angle 
brackets	



Checking Out Code in Eclipse 

•  If many compiler errors in tests, may 
need to add JUnit to classpath 
Ø Configure Build Path 
Ø Libraries, Add Library 

•  JUnit 4 
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Practice with Subclipse 
•  Create file named with your name 
•  Put some text into it 
•  Add the file to the Repository: 

Ø Right-click on the file you created à Team à Add 
•  Commit your file (Save for group to see) 

Ø Right-click on top-level directory/project à Team à 
Commit 

Ø Add an appropriate comment 
•  Update your repository (Get latest working version) 

Ø Right-click on top-level directory/project à Team 
àUpdate 

Ø Do you have any one else’s files? 
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UNDERSTANDING A CODE 
BASE 
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Code Review 

• What questions do you have about the code? 
• What do you want to find out? 
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Understanding the Code 

•  How does the given code map to lexical 
analysis, semantic analysis, and evaluation 
components? 
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Interpreting User’s Input 
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tokens	

parser	
expressions/instructions	

Java’s StreamTokenizer	

Understanding the Code:  
Lexical Analysis 
•  Important classes 

Ø slogo.jelan.parser.ElanInterpeter	
Ø slogo.jelan.parser.tokens.TokenFacto
ry	

•  Output: slogo.jelan.parser.tokens.*	
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PrintToken	
EqualToken	
AssignmentToken	

Understanding the Code: 
Semantic Analysis 
•  Important Classes 

Ø Common interface: 
slogo.jelan.parser.Parser	

Ø slogo.jelan.parser.*Parser	
•  Ex: 
slogo.jelan.parser.ExpressionParser	

Ø slogo.jelan.parser.InstructionParser	
•  Decides which instruction parser to call	

•  Output: slogo.jelan.expressions.* or 
slogo.jelan.instructions.*	
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PrintParser, AssignmentParser	

Understanding the Code: 
Evaluation 
•  Important Classes 

Ø Base class: slogo.jelan.GrammarElement	
Ø Subclasses:	
• slogo.jelan.instructions.Instruction	
• slogo.jelan.expression.Expression	

•  Output: Object	
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Bringing it together 

• slogo.jelan.*	
Ø Breaks classes into appropriate packages: 

Tokens, Expressions, Instructions, Parsers 
• slogo.jelan.parser 

Ø Parse Tokens to create Instructions 
• slogo.jelan.instructions 

Ø Represent instructions 
Ø evaluate method 
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Bringing it together 

•  Mapping between Token, Instruction, 
Parser	
Ø Knows which Parser to call based on 

instructions.prop and mapping from Token to 
Parser 

•  Run ElanInterpreter with tests/
assign_repeat	
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Practice Adding Instructions 
1. Create a token for instruction 

Ø Likely a subclass of token.ReservedToken	
Ø Same prefix as new instruction, e.g., IfToken.java	

2. Create a parser for the instruction with same 
prefix as instruction, e.g., IfParser.java	
Ø Parsing class (presumably implementing Parser) 

returns an instance of parsed Instruction 
3. Create an instruction with prefix name, e.g., 

If.java	
4. Add instruction name to file 

instructions.prop, e.g., add a single line to 
file containing string If  
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Brainstorming 
•  What do you need to do to complete the 

project? 
•  What do you “see” for the final project? 
•  What’s going to change? 
•  Where do you think you’ll run into problems? 
•  To focus your thinking, consider this use case: 

"The user starts the program, types 'fd 50' in the 
command window, and sees the turtle move in 
the display window leaving a trail.” 
Ø What are other use cases? 
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Preparation Analysis 
•  What are the main parts/steps that need to be completed to 

complete the project? 
Ø  How much work does each part require?  

•  Approximate in terms of time or relative to the other steps. 
Ø  How many people should work on each part? 

•  How will your program handle the following use case: "The user 
starts the program, types 'fd 50' in the command window, and 
sees the turtle move in the display window leaving a trail.”? 
Ø  From your description, it should be clear which classes/objects are 

responsible for completing each part of the task.  
•  What 3 extensions would you like to have in the final application? 
•  A plan for how you would tackle implementing the project 

Ø  What parts can be completed independently of the other parts? 
Ø  What parts need to be completed before other parts? 

•  The parts of the project you're most interested in working on, in 
ranked order. 

•  Any questions about the given specification.  
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Due Monday ���
after Thanksgiving	

 TODO 

•  Project Analysis due Monday after 
Thanksgiving 
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