
11/9/11

1

Objectives

•  Event Handling
•  Animation

Nov 9, 2011 Sprenkle - CSCI209 1

Discussion of Roulette Assignment

•  How easy/difficult to refactor for extensibility?
• Was it easier to add to your refactored code?

Ø What would your refactored classes have looked
like if I hadn’t told you that you were going to add
the three other bets?

•  How easy/difficult was it to test your classes?
Ø Will you ever run into something similar again?
Ø What lessons did you learn?

Nov 9, 2011 Sprenkle - CSCI209 2

GUI Review

• What is the purpose of a Layout Manager?
•  Describe two different layout managers
•  How can we create a customized layout?
• What are the components of event handling?

Nov 9, 2011 Sprenkle - CSCI209 3

Compiler’s Names of Classes

•  Contents of Eclipse project’s bin directory
from last class:

Nov 9, 2011 Sprenkle - CSCI209 4

Some unusual names. Why?	

EVENT HANDLING
Other types of events

Nov 9, 2011 Sprenkle - CSCI209 5

Window Events

• When a user closes a window, the window
simply stops being displayed
Ø Program does not end

•  Suppose we want our program to end when
a certain frame is closed

•  Closing a frame is a window event
Ø In contrast to an action event

Nov 9, 2011 Sprenkle - CSCI209 6

11/9/11

2

Catching Window Events

•  To catch window events, create an object of
a class that implements WindowListener
interface
Ø WindowListener is registered with frame using

its addWindowListener method

•  Note the parallels with action events
Ø Different listener type and register it using a

different (but similar) method call

Nov 9, 2011 Sprenkle - CSCI209 7

The WindowListener Interface

•  Contains 7 methods
Ø One for each type of window event
Ø A class that implements WindowListener

must implement all 7 methods

Nov 9, 2011 Sprenkle - CSCI209 8

public interface WindowListener {	
	void windowOpened(WindowEvent e);	
	void windowClosing(WindowEvent e);	
	void windowClosed(WindowEvent e);	
	void windowIconified(WindowEvent e);	
	void windowDeiconified(WindowEvent e);	
	void windowActivated(WindowEvent e);	
	void windowDeactivated(WindowEvent e);	

}	

Example: Implementing a
WindowListener	

Nov 9, 2011 Sprenkle - CSCI209 9

class Terminator implements WindowListener {	
	public void windowClosing(WindowEvent evt) {	
	 	System.exit(0);	
	}	

	
	public void windowOpened(WindowEvent e) {}	
	public void windowClosed(WindowEvent e) {}	
	public void windowIconified(WindowEvent e) {}	
	public void windowDeiconified(WindowEvent e) {}	
	public void windowActivated(WindowEvent e) {}	
	public void windowDeactivated(WindowEvent e) {}	

}	

What does this class do?	

Example: Implementing a
WindowListener	
•  Listens for window events on a frame and

ends the program when the frame is closed

Nov 9, 2011 Sprenkle - CSCI209 10

class Terminator implements WindowListener {	
	public void windowClosing(WindowEvent evt) {	
	 	System.exit(0);	
	}	

	
	public void windowOpened(WindowEvent e) {}	
	public void windowClosed(WindowEvent e) {}	
	public void windowIconified(WindowEvent e) {}	
	public void windowDeiconified(WindowEvent e) {}	
	public void windowActivated(WindowEvent e) {}	
	public void windowDeactivated(WindowEvent e) {}	

}	
For JFrames use setDefaultClosedOperation	

Adapter Classes

• Writing code for 6 methods that don’t do
anything is somewhat tedious
Ø Eclipse helps

•  Most AWT listener interfaces have a
corresponding adapter class
Ø Implements each of interface’s methods but

does nothing inside each
Ø No adapter classes for AWT interfaces with only

one method (such as ActionListener)

Nov 9, 2011 Sprenkle - CSCI209 11

Adapter Classes

•  If you want a WindowListener class that
does nothing with most window events
Ø Create a new class that extends
WindowAdapter and override relevant method
(s)

• When could extending a class be a problem?
Ø How big of a concern is that for this specific

case/type of class?

Nov 9, 2011 Sprenkle - CSCI209 12

11/9/11

3

Extending an Adapter Class

•  Redefine Terminator in much less code…

Nov 9, 2011 Sprenkle - CSCI209 13

class Terminator extends WindowAdapter {	
	public void windowClosing(WindowEvent evt) {	
	 	System.exit(0);	
	}	
	// all other methods are the same as in 	
	// WindowAdapter—all do nothing.	

}	

Registering a WindowListener	
•  Register Terminator to listen for window

events
•  Assuming that our “main” window frame is

named frame (i.e., if frame is closed the
program should exit)…

Nov 9, 2011 Sprenkle - CSCI209 14

WindowListener listener = new Terminator();	
frame.addWindowListener(listener);	

Alternative: Registering a
WindowListener 	

Nov 9, 2011 Sprenkle - CSCI209 15

frame.addWindowListener(new	
	WindowAdapter() {	
	 	public void windowClosing(WindowEvent evt) {	
	 	 	System.exit(0);	
	 	}	
	});	

What is going on in this code?	

Anonymous Inner Class

Nov 9, 2011 Sprenkle - CSCI209 16

frame.addWindowListener(new	
	WindowAdapter() {	
	 	public void windowClosing(WindowEvent evt) {	
	 	 	System.exit(0);	
	 	}	
	});	

•  Defines a new anonymous class that extends
WindowAdapter class

•  Adds windowClosing method to anonymous class
•  Inherits other 6 methods from WindowAdapter	
•  Creates an object of this new class

Ø Object also does not have a name
•  Passes new no-name object to
addWindowListener method of frame	

TYPES OF EVENTS

Nov 9, 2011 Sprenkle - CSCI209 17

AWT Event Hierarchy

•  10 different types of events in AWT
Ø Semantic events
Ø Low-level events

Nov 9, 2011 Sprenkle - CSCI209 18

Rule of thumb: low-level events cause	

semantic events to happen	

11/9/11

4

AWT Event Types: Semantic Events

•  Semantic event: event that expresses what
a user did

Nov 9, 2011 Sprenkle - CSCI209 19

Type Cause
ActionEvent	 button click, menu selection, selecting a

list item, pressing ENTER in a text field
AdjustmentEvent	 User adjusted a scroll bar

ItemEvent 	 user made a selection from a set of
checkboxes or list items

TextEvent	 the contents of a text field or text area
were changed

AWT Event Types: Low-Level Events
•  Low-level event: makes a semantic event

possible

Nov 9, 2011 Sprenkle - CSCI209 20

Type Cause

ComponentEvent 	 component changed (resized,
moved, shown, etc…)

KeyEvent 	 a key pressed or released

MouseEvent 	 mouse moved or dragged, or mouse
button pressed

FocusEvent 	 component got or lost focus

WindowEvent 	 window activated, closed, etc.

ContainerEvent 	 component added or deleted

AWT Event Types

•  Example:
Ø Adjusting a scrollbar is a semantic event
Ø Made possible by low-level events, such as

dragging the mouse
•  As a general rule,

Nov 9, 2011 Sprenkle - CSCI209 21

low-level events cause	

semantic events to happen	

AWT Event Listeners
•  11 Event Listener Interfaces

Ø ActionListener, AdjustmentListener,
ItemListener, TextListener,
ComponentListener, ContainerListener,
FocusListener, KeyListener,
MouseListener, MouseMotionListener, and
WindowListener	

•  See API for interfaces and their methods
•  Each listener interface with > 1 method has a

corresponding adapter class
Ø  Implements interface with all empty methods

Nov 9, 2011 Sprenkle - CSCI209 22

Components and ComponentEvents
•  A component is a user interface element

Ø Examples: button, textfield, scrollbar
•  All low-level events inherit from ComponentEvent	

Ø getComponent() returns component that originated
event
•  Similar to getSource() but returns object as a
Component and not an Object	

•  Example: A user inputs text into a text field,
generating a key event. Calling getComponent()
on the event returns a reference to that text field

Nov 9, 2011 Sprenkle - CSCI209 23
javax.swing.JTextField[,75,5,87x28, …	

event.getComponent()

Containers and ContainerEvents

•  A container is a screen area or component
Ø Can contain components, such as a panel

•  A ContainerEvent is generated whenever
a component is added or removed from the
container
Ø Supports programming dynamically-changing

user interfaces

Nov 9, 2011 Sprenkle - CSCI209 24

11/9/11

5

FocusEvents

•  A FocusEvent is generated when a
component gains or loses focus

• FocusListener must implement two
methods:
Ø focusGained(): called whenever listener’s

event source gains focus
Ø focusLost(): called whenever listener’s

event source loses focus

Nov 9, 2011 Sprenkle - CSCI209 25

KeyEvents
•  A KeyEvent is generated when a key is

pressed or released
•  A KeyListener must implement 3

methods:
Ø keyPressed() will run whenever a key is

pressed
Ø keyReleased() will run whenever that key is

released
Ø keyTyped() combines the two above

•  Runs when key is pressed and then released and
signifies a keystroke

Nov 9, 2011 Sprenkle - CSCI209 26

KeyEvents

•  Any Component can be an event source for
a KeyEvent	
Ø A component generates a KeyEvent whenever

a key is typed in that component
•  Example:

1.  User types into a text field
2.  That text field generates appropriate

KeyEvents

Nov 9, 2011 Sprenkle - CSCI209 27

MouseEvents
• MouseEvents are generated like KeyEvents

Ø mousePressed()	
Ø mouseReleased()	
Ø mouseClicked()	
Ø You can ignore first 2 if you only care about clicking

•  Call getClickCount() on a MouseEvent
object to distinguish between a single and a
double click

•  Distinguish between mouse buttons by calling
getModifiers() on a MouseEvent object
Ø E.g., middle button

Nov 9, 2011 Sprenkle - CSCI209 28

MouseEvents

• MouseEvents are also generated when
mouse pointer enters and leaves
components (mouseEntered() and
mouseExited())
Ø Part of MouseListener interface

•  Actual movement of mouse is handled with
MouseMotionListener interface
Ø Most applications only care about where you

click and not how and where you move mouse
pointer around

Nov 9, 2011 Sprenkle - CSCI209 29

Example: Window Events

•  Combines WindowListener,
WindowFocusListener,
WindowStateListener	

Nov 9, 2011 Sprenkle - CSCI209 30

WindowEventDemo.java	

11/9/11

6

GRAPHICS PROGRAMMING

Nov 9, 2011 Sprenkle - CSCI209 31

Review: Graphics Object
• Abstract class

Ø Implementation different for each platform

• A collection of settings for drawing images
and text, such as colors and fonts

• Where used:
Ø paintComponent(Graphics g)	

Nov 9, 2011 Sprenkle - CSCI209 32

Nov 9, 2011 Sprenkle - CSCI209 33

Drawing Lines, Rectangles, Ovals
•  Draw ovals, rounded rectangles within

bounding rectangle

•  Filled or outlined (e.g., fillRect vs
drawRect)

•  Can also draw arcs, polygons, polylines

Starting Position of oval
width	

height	

x, y	

Colors

•  Colors made up of three components
Ø Red, Green, Blue component
Ø RGB values

•  Components: either 0 to 255 or 0.0 to 1.0

• Color class defines 13 color constants
Ø black, blue, cyan, darkGray, gray,
green, lightGray, magenta, orange,
pink, red, white, and yellow	

Ø Also defined in all caps
Ø See API

Nov 9, 2011 Sprenkle - CSCI209 34

http://en.wikipedia.org/wiki/
List_of_colors	

Using Graphics object

1. Set the color/font
2. Draw the shape/string

Nov 9, 2011 Sprenkle - CSCI209 35

public void paintComponent(Graphics g) {	
	
	super.paintComponent(g); 	
	this.setBackground(Color.WHITE);	

	
	// set new drawing color using integers	
	g.setColor(new Color(255, 0, 0)); 	
	g.fillRect(15, 25, 100, 20);	
	g.drawString("Current RGB: " + g.getColor(), 130, 40);	

	
	…	

} From ColorPanel.java	

Understanding Code

•  Simple Bouncers
Ø How draws
Ø How animates

•  Screen Savers
Ø What represents an object in the screen saver?
Ø How generates screen saver objects?
Ø How handles animation?
Ø How handles events?

Nov 9, 2011 Sprenkle - CSCI209 36

Import project:
/home/courses/cs209/handouts/screensavers.tar	

11/9/11

7

Screensavers GUI/Architecture

Nov 9, 2011 Sprenkle - CSCI209 37

Canvas	
Has List of Movers	

ButtonPanel	

RangeSlider	

Timer: Periodically calls ���
Canvas’s actionPerformed method,
which repaints screen/Movers, ���
moves Movers	

JButton: associated with a
Factory that creates Movers	

What does the factory do? Why?	

What do you need to do to add screen savers?	

Midterm Prep
•  Java

Ø Collections Framework
Ø Comparison with Python
Ø Jar files

•  Software Development
Ø Models
Ø Testing
Ø Design Principles
Ø Code smells
Ø Refactoring

•  GUI programming
Ø Event handling, inner classes

Nov 9, 2011 Sprenkle - CSCI209 38

Document posted online	

TODO

•  Fri: Exam
•  Monday, EC: Naomi Oreskes talk

Ø 5:30 p.m. talk
•  Next Fri: ScreenSavers

Nov 9, 2011 Sprenkle - CSCI209 39

