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Objectives 

•  GUIs in Java 
•  Layout Managers 
•  Event Handling 
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Aside: On ING Direct’s site 
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Assignment 10 Notes 

•  Focus on Extensibility 
•  But, handle other code smells as well 
•  Due Wednesday 

 
•  Any questions? 
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GUI Review 

• What are the two main packages for GUI 
development in Java? 

•  Is GUI development looking a little difficult? 
Ø Why? 
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Review: JFrame 

•  Top-level window 
Ø Has title, border 

•  Contains ContentPane	
Ø A Container object that 

holds components you add, 
placing them in the frame 

Ø The part of the frame that 
holds UI components 

ContentPane	

JFrame	 Review: Building a GUI 
1. Create (top down): 

Ø Frame 
Ø Container 
Ø Components 
Ø Listeners 

2. Add (bottom up): 
Ø Listeners into 

components 
Ø Components into 

panel 
Ø Panel into frame 

Container 

JButton 

Listener 

JFrame 

JLabel 
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Placement of Components 
•  How does the panel know where to place a 

button? 
•  How does the panel know where to place the 

next button? 
•  How does the panel know where to place 

any component that is added to it? 
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LAYOUT MANAGERS 
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Layout Managers 

•  Java uses layout managers to place 
components inside a container  

• LayoutManager automatically handles 
placement of components 
Ø When a component is added to a container 

(through add), layout manager decides where to 
place the component 
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Border Layout Manager 

•  Default layout manager of the content pane 
for JFrame	

•  Lets you choose where you want to place 
each component 
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with respect to 
the container	



Center 
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West East 

Border Layout Regions 

•  Edge components are laid out first 
•  Center occupies remaining space 
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Center 

North 
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West East 

Border Layout Rules 

•  Grows all components to fill available space 
•  If container is resized, edge components are 

redrawn and center region size recomputed 
•  To add a component to a container using a 

border layout 
Ø Ex: JFrame’s content pane 
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Container contentPane = getContentPane();	
contentPane.add(button, BorderLayout.SOUTH);	
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Adding Components Using a Border 
Layout 

•  If no region specified, assumes center region 

Ø Recall: border layout grows component to fit 
specified region 
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Container contentPane = getContentPane();	
contentPane.add(button, BorderLayout.SOUTH);	

What happens if we add multiple components, 
e.g., three buttons, without specifying a region?	



A Border Layout Limitation 

•  Last button added grows to completely fill 
center region 

•  First two buttons were discarded/overwritten 
by each subsequently added component 

Nov 7, 2011 Sprenkle - CSCI209 14 

Three 

Default Layout Managers 

• JFrame’s content pane: BorderLayout	
• Panel’s: FlowLayout	

Ø What we used on Friday 
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Changing Layout Managers 

•  Any container can use any layout manager 
•  Use setLayout to change layout manager 

before adding components 
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// sets layout to a new flow layout manager that	
// aligns row components to the left and uses a 20 pixel	
// horizontal separation and 20 pixel vertical separation	
setLayout(new FlowLayout(FlowLayout.LEFT, 20, 20));	
	
// sets layout to a new border layout manager that	
// uses a 45 pixel horizontal separation between	
// components (regions) and a 20 pixel vertical separation	
setLayout(new BorderLayout(45, 20));	

The Flow Layout Manager 

•  Default layout manager for a panel  

•  Lines components up horizontally until no 
more room in container 
Ø Then starts a new row of components 

•  If user resizes component, layout manager 
automatically reflows components 
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The Flow Layout Manager 

•  Can choose how to arrange components in a 
row 
Ø Default: center each row 
Ø Other options: left or right align   

•  Change alignment using setLayout 

Ø Panel set to use a flow layout manager with row 
components aligned to the left 

•  Another constructor has hgap and vgap for 
gaps to put around components 
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setLayout(new FlowLayout( FlowLayout.LEFT ));	
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Combining Panels 
•  Panels act as (smaller) containers for UI 

elements 
•  Can be arranged inside a larger panel by a 

layout manager 
•  Use additional panels to address Border 

Layout problem 
Ø Create a panel 
Ø Add some buttons to it 
Ø Add that panel to a region in content pane 
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Combining Panels 
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JButton	 JButton	

JTextArea	

Combining Panels 
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North	
	

JPanel: 	
BorderLayout	

	
	

Center	

JFrame	

JPanel: FlowLayout	

JButton	JButton	

JTextArea	

Using Additional Panels 

•  Get fairly accurate and precise placement of  
components 

•  Use nested panels with 
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FlexibleLayout.java	

Layout Use 
BorderLayout	 Content panes and enclosing panels 

Flow Layouts Panels containing buttons and other 
UI components 

Another Layout Manager: Grid 

•  Divides container into columns and rows of 
equal size, which collectively occupy the 
entire container region 

•  Rows and columns are aligned like a table 
Ø When container is resized, the “cells” grow and/

or shrink 
Ø Cells always maintain identical sizes 
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Grid Layout Manager Construction 
•  Number of rows and columns in layout 

•  Can specify a horizontal and vertical 
separation between rows and columns: 
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panel.setLayout(new GridLayout(5, 4)); // 5 rows, 4 cols	

panel.setLayout(new GridLayout(5, 4, 20, 20)); 	
// 5 rows, 4 cols, 20 pixels between rows & between cols	



11/7/11 

5 

•  Components added sequentially 
•  1st add adds component to 1st row, 1st col 
•  2nd add adds component to 1st row, 2nd col 

•  And so forth until 1st row is filled 
•  Then 2nd row begins with the 1st column 
•  Continues until the entire container is filled 

Adding Components to a Grid Layout 
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Grid Layout Rules 
•  Components are resized to take up entire 

cell 
•  Restrictive but can be useful for some 

applications 
•  Example: Create a row of buttons of identical 

size 
1.  Make a panel that has a grid layout with one 

row 
2.  Add a button to each cell 
3.  Set horiz/vert separation so buttons are not 

touching 
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Layout Manager Heuristics 
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Left to right, 

Top to bottom 

c 

n 

s 

e w 

FlowLayout	 GridLayout	

BorderLayout	

none,  
programmer  
sets x,y,w,h 

null 

One at a time 

CardLayout	 GridBagLayout	

JButton 
HANDLING USER 
INTERACTIONS 
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Event-Driven Programming 

•  User actions (e.g., mouse clicks, key 
presses), sensor outputs, or messages from 
other applications determine flow of program 

•  Application architecture: 
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while ( true ) {	
	event = waitForEvent();	
	handleEvent(event);	

}	

Event Basics 

•  An event is generated from an event source 
and is transmitted to an event listener 

•  Event sources allow event listeners to 
register with them 
Ø Registered listener requests event source send 

its event to listener when event occurs 
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Event	


Source	



Event	


Listener	



Event	
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Java Event Handling 

•  All events are objects of event classes 
Ø Derive from java.util.EventObject 

•  Event source 
Ø Sends out event objects to all registered 

listeners when that event occurs 
•  Listener 

Ø Implements a listener interface 
Ø Uses EventObject to determine its reaction to 

the event 
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Java Event Handling 

•  Register a listener with an event source:  
  

•  Example: 

Ø Whenever an “action event” occurs on button, 
listener is notified 
•  For buttons, an action event is a button click 
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ActionListener listener = . . .;	
JButton button = new JButton(“Click Me!”);	
button.addActionListener(listener);	

eventSource.addEventListener(	
	 	 	eventListenerObject);	

Listener Objects 

•  A listener object must be an instance of a 
class that implements the appropriate 
interface 
Ø For buttons, that’s ActionListener	

•  Listener class must implement 
actionPerformed(ActionEvent event)	
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Listener Objects and Event Handling 

• When a user clicks button, JButton object 
generates an ActionEvent object 

• JButton passes generated event object to 
listener object’s actionPerformed  

•  A single event source can have multiple 
listeners listening for its events 
Ø Source calls actionPerformed on each of its 

listeners 
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Which makes JButton a what? 

An Example of Event Handling 

•  Suppose we want to make a panel that has 
three buttons on it 
Ø Each button has a color associated with it 
Ø When user clicks a button, background color of 

panel changes to the corresponding color 
• We need 

1.  A panel with 3 buttons on it 
2.  3 listener objects, one registered to listen for a 

button’s events 
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Event Handling Example 

1. Make some buttons and add them to panel 
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public class ColoredBackground extends JFrame {	
   public ColoredBackground() {	

	…	
	Container cp = getContentPane();	

	
	JButton red = new JButton("Red"); 	
	red.setForeground(Color.red);	 	
	JButton green = new JButton("Green");
	green.setForeground(Color.green); 	
	JButton blue = new JButton("Blue");	
	blue.setForeground(Color.blue); 	 		

	
	cp.add(red);	
	cp.add(green);	
	cp.add(blue);	
	…	
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Listener Objects 

2. Create listeners for our buttons (event 
sources) 
Ø An action listener can be any class that 

implements the ActionListener interface 
Ø Make a new class that implements the interface 
• actionPerformed method should set the 

background color of panel 
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Our Listener Class: ColorAction	
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class ColorAction implements ActionListener {	
  public ColorAction(Color c) { 	

	backgroundColor = c; 	
  }	
	
  public void actionPerformed(ActionEvent evt) {	
  	// set panel background color here	

	. . . 	
  }	
	
  private Color backgroundColor;	
}	

How can we do this?	


Discussion to come…	



Registering Our Listener Class 

3. Create ActionListener objects and 
register them with the buttons 
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ColorAction greenAction = new ColorAction(Color.green);	
ColorAction blueAction  = new ColorAction(Color.blue);	
ColorAction redAction   = new ColorAction(Color.red);	
	
green.addActionListener(greenAction);	
blue.addActionListener(blueAction);	
red.addActionListener(redAction);	

These are JButtons	

Registering Our Listener Class 

• When a user clicks the button with the label 
“Green”, the green JButton object 
generates an ActionEvent	
Ø Passes the ActionEvent object to 
greenAction’s actionPerformed method 

Ø Method can then set frame’s background color 
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Any implementation issues?	



The Listener Class & the Frame 

• ColorAction objects don’t have access to 
frame 
Ø How can they change the background color? 

•  Possible solutions? 
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The Listener Class & the Frame 

• ColorAction objects don’t have access to 
frame 
Ø How can they change the background color? 

•  Two possible solutions: 
1.  Add a frame instance field to ColorAction 

class and set it in constructor 
• ColorAction object knows which frame it is 

associated with and can call appropriate method 
to change its background color 

2.  Make ColorAction an inner class of class 
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Listener as an Inner Class 
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class ColoredBackground extends JFrame {	
   // ColoredBackground code …	
   . . .	
	
   private class ColorAction implements ActionListener {	
     . . .	
     private Color backgroundColor;	
     public void actionPerformed(ActionEvent evt) {	
     	 	setBackground(backgroundColor);	
   	 	repaint();	
     }	
   }	
}	 Where are these 

methods coming from?	



Close Up: actionPerformed 

•  ColorAction does not have setBackground or 
repaint method 

•  Since ColorAction is an inner class of 
ColoredBackground, ColorAction can directly 
access ColoredBackground’s instance fields and 
methods 
1.  Inner class calls outer class’s method 

•  Parameter: inner’s private data (backgroundColor) 
2.  Inner calls outer class’s repaint() method 

•  Redraw the frame 
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public void actionPerformed(ActionEvent evt) {	
	setBackground(backgroundColor);	
	repaint();	

}	

Event Listeners as Inner Classes 
•  A common and beneficial practice 
•  Event listener objects typically need to 

access/modify other objects when their 
corresponding event occurs 

•  It is often possible to place the listener class 
inside the class whose state the listener 
should modify 

•  It’s also good OOP design 
Ø Doesn’t violate encapsulation rules 
Ø Makes code easier 
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A Different Listener Approach 

•  Any object of a class that implements 
ActionListener can listen for action 
events from a source 
Ø Could make ColoredBackground listen for its 

own buttons’ events 
Ø Implement interface and do correct registering 

with the buttons 
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A Different Listener Approach 
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class ColoredBackground2 extends JFrame 	
	implements ActionListener {	

	
   public ColoredBackground2() {	
   	. . . 	

	green.addActionListener(this);	
	blue.addActionListener(this);	
	red.addActionListener(this);	

   }	
   . . . 	
	
   public void actionPerformed(ActionEvent evt) {	

	// set background color	
	. . .	

   }	
}	

Runs whenever any of the buttons is clicked.	


What do we need to do in here?	



A Different Listener Approach 

• ColoredBackground’s 
actionPerformed runs whenever any of 
the buttons is clicked 
Ø How do we find out which button was pressed? 
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public void actionPerformed(ActionEvent evt) {	
	// gets the source that generates this event	
	Object source = evt.getSource();	

	
	if (source == green) . . .	
	else if (source == blue) . . .	
	else if (source == red) . . .	

}	
Why ==, not equals()?	
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Which approach is better? 
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Which approach is better? 
•  Inner class approach 

makes sense from an 
OOP design point 
Ø Each event source has 

its own listener, which 
can directly modify 
panel as it needs 

•  Having panel itself 
listen is much more 
straightforward 
Ø Since panel needs to 

change, have it listen! 
Ø But, handling method 

must determine event’s 
source and switch its 
behavior 
•  Difficult with many event 

sources 
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Consider: How easy to add additional 
event sources for each case?	



Which approach is better? 

•  Neither way is “better” 
•  Inner classes make sense 

Ø Somewhat confusing at first 
Ø Great benefits  
Ø We will tend to use inner class listeners 

Nov 7, 2011 Sprenkle - CSCI209 51 

Simplification of our Event Handlers 

•  For each button, we do four things: 
1.  Construct the button with a label string 
2.  Add the button to the panel 
3.  Construct an action listener with the appropriate 

color 
4.  Register that listener with the button 
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What does that call for?	



Simplification of our Event Handlers 

•  Makes the ColoredBackground 
constructor much simpler… 
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void makeButton(String label, Color backgroundColor) {	
  JButton button = new JButton(label);	
  add(button);	
  ColorAction action = new ColorAction(backgroundColor);	
  button.addActionListener(action);	
}	

public ColoredBackground()  {	
	…	
	makeButton(“Yellow”,Color.yellow);	
	makeButton(“Blue”,Color.blue);	
	makeButton(“Red”,Color.red);	

}	

Simplifying Further 

• We only use the ColorAction class in 
makeButton method 

•  How can we further simplify the code? 
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void makeButton(String label, Color backgroundColor) {	
  JButton button = new JButton(label);	
  add(button);	
  ColorAction action = new ColorAction(backgroundColor);	
  button.addActionListener(action);	
}	
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Simplifying Further 

•  Make the ColorAction class an 
anonymous inner class 

•  Since only use class at one point, define 
class on the fly 
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An Anonymous Class Listener 
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void makeButton(String label, final Color bgColor) {	
  JButton button = new JButton(label);	
  add(button);	
	
  button.addActionListener( new ActionListener() {	

	   public void actionPerformed(ActionEvent evt) {	
   	 	setBackground(bgColor);	

	 	repaint();	
	   }	
	} );	

}	
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Anonymous Inner Classes 

•  Confusing syntax! 
•  Create a new class that implements 
ActionListener interface 
Ø Define required method, actionPerformed, 

inside braces 
•  Any needed parameters are inside the 

parentheses, following the supertype name: 
new SuperType(construction parameters) {	

	inner class methods and data	
}	

Nov 7, 2011 Sprenkle - CSCI209 58 

Anonymous Inner Classes 

• Supertype can be an interface or a class 
Ø If an interface, inner class implements the 

interface and required methods 
Ø If a class, the inner class extends that class 

•  Anonymous inner classes do not have 
constructors 
Ø Parameters are passed to superclass’s 

constructor 
Ø If inner class implements an interface, no 

construction parameters 

An Anonymous Class Listener 
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void makeButton(String label, final Color bgColor) {	
  JButton button = new JButton(label);	
  add(button);	
	
  button.addActionListener( new ActionListener() {	

	   public void actionPerformed(ActionEvent evt) {	
   	 	setBackground(bgColor);	

	 	repaint();	
	   }	
	} );	

}	

Interface	


(no params)	



Method required to be 
implemented for interface	
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Anonymous Inner Classes 
•  Carefully differentiate between  

Ø Construction of a new object of a class 
Ø Construction of an object of an anonymous inner 

class that extends that class… 

// this is a Person object	
Person queen = new Person(“Mary”);	
	
// this is an object of an anonymous	
// inner class extending the Person class	
Person count = new Person(“Dracula”) {. . .};
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Finale! 

•  Show different versions of 
ColoredBackground GUI 
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Midterm Prep 
•  Java 

Ø Collections Framework 
Ø Comparison with Python 
Ø Jar files 

•  Software Development 
Ø Models 
Ø Testing 
Ø Design Principles 
Ø Code smells 
Ø Refactoring 

•  GUI programming 
Ø Event handling, inner classes 
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Document posted online	



TODO 

•  Assignment 10: Due on Wednesday 
•  Exam 2 Friday 
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