Objectives

Open-Closed Principle
Code Smells
Refactoring

Oct 30, 2009 Sprenkle - CS209 1

Reflection on Project 1

What were the difficult parts of Project 1?
Did they get any easier?

Did you develop a system or any techniques
to make the process easier?

In the future, how could you make the
process easier?

What do you think of JUnit in Eclipse?

Oct 30, 2009 Sprenkle - CS209 2

Review
What is guaranteed in software
development?

What are some principles of design in
Object-oriented Programming to address the
challenge posed by that guarantee?

What is the underlying theme of how to
achieve those principles?

Oct 30, 2009 Sprenkle - CS209 3

Review: Best Practices

(DRY): Don’t repeat yourself
Single responsibility principle
Shy

Avoid Coupling
Tell, Don’t Ask
Open-closed principle
Avoid code smells

Oct 30, 2009 Sprenkle - CS209 4

Open-Closed Principle

Bertrand Meyer
Author of Object-Oriented Software Construction
Foundational text of OO programming

Principle: Software entities (classes, modules,
methods, etc.) should be open for extension
but closed for modification

Design modules that never change (after
completely implemented)

If requirements change, extend behavior by
adding code

Don’t change existing code > won'’t create bugs!

Oct 30, 2009 Sprenkle - CS209 5

Attributes of Software that Adhere to OCP

Open for Extension

Behavior of module can be extended

Make module behave in new and different ways
Closed for Modification

No one can make changes to module

These attributes seem to be at odds with each other.
How can we resolve them?

Oct 30, 2009 Sprenkle - CS209 6




Using Abstraction

Abstract base classes
~ Fixed abstraction - API
» Cannot be changed
Derived classes: possible behaviors

» Can always create new child classes of abstract
base class

Oct 30, 2009 Sprenkle - CS209 7

Not Open-Closed Principle

Client uses Server class

public class Client {
public void method(Server x) {

3

- —E

Oct 30, 2009 Sprenkle - CS209

Open-Closed Principle

Client uses AbstractServer class

public class Client {
publ'i.c void method(AbstractServer x) {

Abstract
Server

exten

Oct 30, 2009 Sprenkle - CS209 9

Strategic Closure

No significant program can be completely
closed
Must choose kinds of changes to close

» Requires knowledge of users, probability of
changes

» Most probable changes should be closed

Oct 30, 2009 Sprenkle - CS209

Heuristics and Conventions

Member variables are private

» A method that depends on a variable cannot be
closed to changes to that variable

» The class itself can’t be closed to it
All other classes should be
No global variables
» Every module that depends on global variable
cannot be closed to changes to that variable

» What happens if someone uses variable in
unexpected way?

» Counter examples: System.out, System.in
= Apply abstraction to parts you
0ct30, 2009 think are going to change "

Code Smells

Duplicated code
Long method if statements

Large class Shotgun surgery
Long parameter list Literals

Very similar subclasses Global variables
Too many public Side effects
variables Using instanceof
Empty catch clauses

Oct 30, 2009 Sprenkle - CS209

Switch statements/long




Duplicated Code
What'’s the problem with duplicated code?

Why do we like it?
» What made us write the duplicated code?

What can we do when we have duplicated code?
(How can we get rid of the duplicate code?)

Oct 30, 2009 Sprenkle - CS209 13

Duplicated Code

Example: same expression in 2 methods of
the same class

» Solution: Extract method
» Call method from those two places
Example: duplicated code in 2 sibling
subclasses
d Parent
I_I_|

Oct 30, 2009 Sprenkle - CS209 14

Duplicated Code

Example: duplicated code in 2 sibling
subclasses
» Extract method, put into parent class

» If similar but not duplicate, extract the duplicate
code (or parameterize)

Example: duplicated code in unrelated
classes

Oct 30, 2009 Sprenkle - CS209 15

Duplicated Code

Example: duplicated code in unrelated
classes
» Ask: where does method belong?
» One solution:
Extract class
Use new class in classes
» Another solution:
Keep in one class
Other class calls that method

Oct 30, 2009 Sprenkle - CS209 16

Refactoring: Solution to Code Smells

Refactoring: Updating a program to improve its
design and maintainability without changing its
current functionality significantly

Example
» Creating a single function that replaces 2 or
more sections of similar code
Reduces redundant code
Makes code easier to debug, test

After refactoring your code, what should you do next?

Oct 30, 2009 Sprenkle - CS209 17

Long Methods

What's the problem with long methods?
What made us write them?

Oct 30, 2009 Sprenkle - CS209 18




Long Methods: Issues and Solutions

Issues:
~ Hard to understand (see) what method does
» Smaller methods have reader overhead
Look at code for called methods
But, should use descriptive names

Solutions:

» Find lines of code that go together (may be
identified by a comment) and extract method

Oct 30, 2009 Sprenkle - CS209 19

Large Class
What’s the problem?

Oct 30, 2009 Sprenkle - CS209 20

Large Class

Issue: Too many instance variables - trying
to do too much (Single Responsibility)

Solutions:

» Bundle groups of variables together into another

class
Look for common prefixes or suffixes

» If includes optional instance variables (only
sometimes used), create child classes

» Look at how users use the class for ideas of how
to break it up

Eclipse: Refactor > Extract Class or
Oct 30, 2009 Extract Superclass .

Long Parameter List

More difficult to use (do | have everything?)
If method signature changes, have a lot of
places to change

Solutions: Use objects

~ Instead of separate parameters for an object’s
data

» Group parameters together

Eclipse: Refactor > Introduce Parameter Object
OR Refactor > Change Method Signature

Oct 30, 2009 Sprenkle - CS209 22

Bin-Fitting Problem
Classic CS problem: fit as many of
something (A) into as few (B) as possible
Example

» A: Files, which have a size
» B: CDs or DVDs (Disks)

File "
L 7

Oct 30, 2009 Sprenkle - CS209 23

Heuristics

Worst fit

» Store file in disk with most free space
In-order worst fit

» Put files on disk, in order seen
In-decreasing-order worst fit

» Sort files by size

» Put on disks

Oct 30, 2009 Sprenkle - CS209 24




Finding the Disk With Most Free Space

Keep the disks in sorted order by their free
space
> Java class: PriorityQueue

Uses compareTo method or Comparator

Oct 30, 2009 Sprenkle - CS209 25

Getting A Solution

Import > General - Existing project into
Workspace
» Archive file: /home/courses/cs209/handouts/
bins.tar
Try running Bin.java
» Run options
» Argument: data/example.txt

Oct 30, 2009 Sprenkle - CS209 26

Refactoring Discussion

Looking at the main method on the handout...

How clearly written is the code?

What, if any, comments might be helpful
within the code?

Does it satisfy its role as a tutorial?

What, if any, suggestions does this code
make about how the remaining parts of the
assignment will be written?

How would you test this code for bugs?

Oct 30, 2009 Sprenkle - CS209 27

Assignment 10: Code Critique &
Refactoring

Given: a problem specification and a solution to
the problem
~ You refactoring your own code is emotional
» More objective with someone else’s solution
Goals
» Read and understand someone else’s code
Haven’t done much of this in Java
» Critique code (do you smell something?)
Identify, articulate problems
» Refactor code to solve problems identified
» Write tests to verify the code

Oct 30, 2009 Sprenkle - CS209 28




