
11/30/11 

1 

Objectives 

• Wrap up Design Patterns 
•  Designing APIs 

Nov 30, 2011 Sprenkle - CSCI209 1 

SLogo Notes 
•  No final exam: final project is 20% of your grade 
•  FORWARD: in current direction 

Ø Not the same as North 
•  Remember: Use use cases to see what you’re 

missing 
•  Can use the WWW to search for help (within 

reason) 
Ø OK: “Handling files in Java” 
Ø Not OK: “Implementing Turtle Graphics in Java” 
Ø Cite your sources 

Nov 30, 2011 Sprenkle - CSCI209 2 

SLogo Notes 

•  Common extensions: 
Ø Undo/redo 
Ø Tail modifications 
Ø Custom turtle images 
Ø Showing variable values 

•  Post-mortem 
Ø Text file or PDF—not a ODT, DOC, or DOCX file 

Nov 30, 2011 Sprenkle - CSCI209 3 

Review 

• What is a design pattern? 
• What design patterns have we discussed? 

Ø What design principle(s) does it follow? 

Nov 30, 2011 Sprenkle - CSCI209 4 

Review: Design Pattern 

•  Not a finished design that can be 
transformed directly into code 

•  Description or template for how to solve a 
problem that can be used in many different 
situations 
Ø “Experience reuse”, rather than code reuse 

Nov 30, 2011 Sprenkle - CSCI209 5 

General reusable solution to a commonly 
occurring problem in software design	



Summary of Design Patterns 

Nov 30, 2011 Sprenkle - CSCI209 6 

Pattern When to Use 

Delegation 

Strategy 

Factory 

Observer 

Decorator 



11/30/11 

2 

Summary of Design Patterns 
Pattern When to Use 

Delegation Have something that could be a separate 
responsibility/class 

Strategy Have a variety of algorithms that can be encapsulated 
to solve a given problem 

Factory To generate objects without knowing their concrete 
class 

Observer Have objects that need to be notified of changes to 
other objects 

Decorator Want to add (possibly many additive) behaviors 

Nov 30, 2011 Sprenkle - CSCI209 7 

Not all of the design patterns	



What’s Your Coffee Drink? 

•  How can we represent the various 
beverages? 

• What are the possible implementation 
issues? 

Nov 30, 2011 Sprenkle - CSCI209 8 

What’s Your Coffee Drink? 

Nov 30, 2011 Sprenkle - CSCI209 9 

Beverage	
description	
milk	
soy	
flavoring	
whippedcream	
getDescription()	
cost()	
hasMilk()	
setMilk()	
…	

How many additional methods 
will we need to add to create a 
comprehensive beverage object?	



	


How will we compute cost?	



	


What happens when a new 
beverage feature is added?	



One Solution: Decorator 

Nov 30, 2011 Sprenkle - CSCI209 10 

Beverage	
getDescription()	
cost()	

HouseBlend	
cost()	

Espresso	
cost()	

CondimentDecorator	
getDescription()	
cost()	

Mocha	
getDescription()	
cost()	

Soy	
getDescription()	
cost()	

UML Diagram	



Mocha’s Implementation 

Nov 30, 2011 Sprenkle - CSCI209 11 

public class Mocha extends CondimentDecorator {	
	
	private Beverage beverage;	

	
	public Mocha(Beverage beverage) {	
	 	this.beverage = beverage;	

   }	
	
	public String getDescription() {	
	 	return beverage.getDescription() + “, Mocha”;	
	}	

	
	public double cost() {	
	 	return .20 + beverage.cost();	
	}	

}	 What design patterns are used within this class?	


How would we use this class?	



How would we create other beverages?	



Mocha’s Implementation 

Nov 30, 2011 Sprenkle - CSCI209 12 

public class Mocha extends CondimentDecorator {	
	
	private Beverage beverage;	

	
	public Mocha(Beverage beverage) {	
	 	this.beverage = beverage;	

   }	
	
	public String getDescription() {	
	 	return beverage.getDescription() + “, Mocha”;	
	}	

	
	public double cost() {	
	 	return .20 + beverage.cost();	
	}	

}	 Generalize: when to use the Decorator pattern,	


tradeoffs of this design pattern	



Handles part it knows about,	


Delegates rest to Beverage	





11/30/11 

3 

Design Pattern: Decorator 

•  Used to add behavior to an object 
dynamically 
Ø Typically added by doing computation before or 

after an existing method in the object 
•  Benefits: 

Ø Alternative to inheritance 
Ø Can add any number of decorators 

•  Possible drawback: 
Ø Could add many small classes à less than 

straightforward for others to understand 
Nov 30, 2011 Sprenkle - CSCI209 13 Have we seen decorators used in practice?	



Change in Requirements 

• Beverage class has two new methods: 
setSize(…) and getSize()	

•  Condiments should be charged according to 
size 
Ø Example: Soy costs 10¢, 15¢ and 20¢ 

respectively for small, medium, and large 

Nov 30, 2011 Sprenkle - CSCI209 14 

How would you alter the decorator classes 
to handle this change in requirements?	



Handling Change in Requirements 

Nov 30, 2011 Sprenkle - CSCI209 15 

public double cost() {	
	
	double cost = beverage.cost();	

	
	if (getSize() == Beverage.SMALL) {	
	 	cost += .10;	

  	} else if (getSize() == Beverage.MEDIUM) {	
     cost += .15;	
	} else if (getSize() == Beverage.LARGE) {	

     cost += .20;	
	} 	
	return cost;	

}	

Friday: Guest Speaker David Shepherd 

•  Designer of productivity tools at ABB 
•  Talk: “From Student to Professional: Key 

Software Development Skills Not Taught in 
(Most) Computer Science Curricula” 
Ø Purpose: To introduce students to a professional 

developer's toolset and highlight commonly 
missing skills 

•  Read two articles on course schedule page 

Nov 30, 2011 Sprenkle - CSCI209 16 

Friday: Guest Speaker David Shepherd 
•  On Sakai forum for class, answer questions about the 

talk 
Ø What were the three most important points in his talk? 
Ø What was the most surprising thing he mentioned about 

the differences between school and production 
development? 

Ø What specific tool/technique mentioned today were you 
least familiar with prior to the talk?  Do you think you will 
use this tool? Why or why not?  

Ø What are the costs of learning a tool vs the productivity 
gains?  How can productivity tool developers decrease 
costs while increasing productivity gains? 

Ø  In your opinion, what method for gaining experience is 
the easiest and why?  

•  Due on Monday 
Nov 30, 2011 Sprenkle - CSCI209 17 

Looking Ahead 

•  David Shepherd – Friday 
Ø Read articles found on course schedule page 

•  Monday: 1st SLogo prototype due 

Nov 30, 2011 Sprenkle - CSCI209 18 


