
12/7/11

1

Objectives

• Designing APIs
• Reviewing the semester

Dec 7, 2011 Sprenkle - CSCI209 1

Represent Thanksgiving?

Dec 7, 2011 Sprenkle - CSCI209 2

dinner = new Turkey(new Duck(new Chicken()));	

DESIGNING A GOOD API
Josh Bloch’s

Dec 7, 2011 Sprenkle - CSCI209 3

Motivating Good API Design
• APIs can be among a company's greatest

assets
Ø Customers invest heavily: buying, writing, learning
Ø Cost to stop using an API can be prohibitive
Ø Successful public APIs capture customers

• Can also be among company's greatest
liabilities
Ø Bad APIs result in unending stream of support calls

• Public APIs are forever - one chance to get right

Dec 7, 2011 Sprenkle - CSCI209 4

How does API design relate to this class?	

How Does API Design Relate To This
Class?
• You are an API designer

Ø Good code is modular–each module has an API
Ø Your teammates will need to use your API

• Useful modules tend to get reused
Ø Once module has users, can’t change API at will
Ø Good reusable modules are corporate assets

• Thinking in terms of APIs improves code
quality

Dec 7, 2011 Sprenkle - CSCI209 5

Discussion

• What are examples of APIs we have used?
Ø Are they examples of good or bad APIs?

• What are some characteristics of the good?
The bad?
Ø Make into characteristics of good APIs

Dec 7, 2011 Sprenkle - CSCI209 6

12/7/11

2

Characteristics of a Good API

• Easy to learn
• Easy to use, even without documentation
• Hard to misuse
• Easy to read and maintain code that uses it
• Sufficiently powerful to satisfy requirements
• Easy to extend
• Appropriate to audience

Dec 7, 2011 Sprenkle - CSCI209 7

What are some techniques to
achieve this goal?	

API DESIGN PROCESS

Dec 7, 2011 Sprenkle - CSCI209 8

Discussion

• How to design a good API?
• What is the process?

Dec 7, 2011 Sprenkle - CSCI209 9

API Design Process

1. Gather requirements
Ø Eye towards generality
Ø Know what is actually required
Ø Form: Use cases

2. Write short specification
3. Write to API early
4. Maintain realistic expectations

Dec 7, 2011 Sprenkle - CSCI209 10

2. Write Short Specification

• Goal: 1-page Specification
Ø Agility trumps completeness
Ø Easier to modify

• Ask as many programmers as possible about
spec

• Flesh it out as you gain confidence
Ø Necessarily involves coding

Dec 7, 2011 Sprenkle - CSCI209 11

3. Write to Your API Early and Often

• Before you’ve implemented API, write the
code (use cases) that will use the API
Ø Saves you doing implementation you'll throw

away
Ø Similar to role playing

• Start before you’ve even specified it properly
Ø Saves you from writing specs you’ll throw away

• Continue writing to API as you flesh it out
Ø Prevents nasty surprises
Ø Code lives on as examples, unit tests

Dec 7, 2011 Sprenkle - CSCI209 12

12/7/11

3

4. Maintain Realistic Expectations

• Most API designs are over-constrained
Ø People want them to do a lot more
Ø You won't be able to please everyone
Ø Aim to displease everyone equally

• Expect to make mistakes
Ø A few years of real-world use will flush them out
Ø Expect to evolve API

Dec 7, 2011 Sprenkle - CSCI209 13

To See More

• Slides:
Ø http://lcsd05.cs.tamu.edu/slides/keynote.pdf

• Presentation:
Ø http://www.youtube.com/watch?v=aAb7hSCtvGw

Dec 7, 2011 Sprenkle - CSCI209 14

ASSIGNMENT 9
Bin Fitting Problem

Dec 7, 2011 Sprenkle - CSCI209 15

Assignment Review

• What is the overall goal?
• What are the responsibilities?
• Thoughts on refactoring/implementation in

retrospect?

Dec 7, 2011 Sprenkle - CSCI209 16

Total of less than 150 lines of code	

Compare the Following Methods
• PriorityQueue<Disk> fitAlg
(List<Integer> data,
PriorityQueue<Disk> bins)	

• PackingResult fitAlg(List<Integer>
fileList)	

• int fitAlg()	

Dec 7, 2011 Sprenkle - CSCI209 17

How is testing affected?	

API Discussion

• What is a good comment for this method?

Dec 7, 2011 Sprenkle - CSCI209 18

public static void printResults(PriorityQueue<Disk> bins,
double totalsize, String method) {	

	System.out.println("--------------------");	
	System.out.println(method);	
	System.out.println("total size = " + totalsize + "GB");	
	System.out.println();	
	System.out.println("number of bins used: " + 	
	 	 	 	bins.size());	
	System.out.println("Bin# Free Space File sizes");	
	while (!bins.isEmpty()) {	
	 	System.out.println(bins.poll());	
	}	
	System.out.println();	

}
Side Effect!	

12/7/11

4

Excerpts from Good Critiques
• Unfortunately, because of the linear style of

programming used by the original author, we can’t
debug this program quickly or efficiently.
Debugging would basically consist of checking to
make sure that each section of the code works as
intended, which means we’d have to test the code
basically by every 10 lines or so….

Dec 7, 2011 Sprenkle - CSCI209 19

Excerpts from Good Critiques
•  Added a static field “ID” to track the ID of a disk

rather than wasting the extra code lines of having
an extra constructor to specify the ID and forcing
[others to] track the IDs of the disks it is creating…

The downside of this approach is that we can’t
directly specify what we want the ID of a disk to be.
On the other hand, it is a much more direct and
efficient way to ensure that we are always getting a
unique set of IDs for a set of disks.

Dec 7, 2011 Sprenkle - CSCI209 20

Excerpts from Good Critiques
•  The majority of the bin-fitting process was handled

inside the main method. This probably made the
code easy to write, but is disadvantageous for a
number of reasons:
Ø Readability: …
Ø Maintainability: …
Ø Testing: unit testing does not break down into small

pieces to test. There is just one big main method
Ø Debugging: …

•  The bins class was not object oriented really…

Dec 7, 2011 Sprenkle - CSCI209 21

Excerpts from Good Code Critiques
•  After looking back over the code and the changes

I’ve made, I think there will almost always be more
changes possible. For example, the code for the
different heuristic types could be extracted to a
separate class thats [sic] only job is to define the
heuristics.

•  Also, the Disk class could be changed to
accommodate any type of storage media, not just
DVDs.

Dec 7, 2011 Sprenkle - CSCI209 22

Excerpts from Good Critiques
•  I thought about how this program is likely to change.

Right now we have two different methods to fit files
onto disks; however, these two are certainly not the
only two methods, and in the future perhaps we will
want to use other methods in the Bins class. For
this reason, I decided to make the fitFilesToDisk
method abstract in the Bins class and to make a
WorstFit class that inherits from the Bin class….

Dec 7, 2011 Sprenkle - CSCI209 23

ASSIGNMENT 10
DISCUSSION

Dec 7, 2011 Sprenkle - CSCI209 24

12/7/11

5

Review: Game class

Dec 7, 2011 Sprenkle - CSCI209 25

private String placeBet(int whichBet) {	
	String result = "";	

	
	if (whichBet == 0) {	
	 	Set<String> choices = new TreeSet<String>();	

choices.add(Wheel.BLACK);	
choices.add(Wheel.RED);	
result = ConsoleReader.promptOneOf("Please bet",
choices);	

	} else if (whichBet == 1) {	
Set<String> choices = new TreeSet<String>();	
choices.add("even");	
choices.add("odd");	
result = ConsoleReader.promptOneOf("Please bet",
choices);	

} else if (whichBet == 2) {	
…	

}	
System.out.println();	
return result;	

}

One Possibility for Bet Hierarchy

Dec 7, 2011 Sprenkle - CSCI209 26

Bet	
placeBet()	

betIsWon(Wheel wheel)	

OneToOneBet	
placeBet()	

betIsWon(Wheel wheel)	

ConsecutiveNumbersBet	
placeBet()	

betIsWon(Wheel wheel)	

HighLowBet	
placeBet()	

betIsWon(Wheel wheel)	

RedBlackBet	
placeBet()	

betIsWon(Wheel wheel)	

Discussion

• Benefits of the refactored hierarchy

• Drawbacks of the refactored hierarchy

Dec 7, 2011 Sprenkle - CSCI209 27

Benefits of The Refactored Hierarchy

• Benefits of the refactored hierarchy
Ø Where is the logic about the bets?

•  In the Bet classes
• Game can manage the game, not be responsible

for bets
Ø Easier to add a new Bet	

• Drawbacks of the refactored hierarchy
Ø Adds more classes, hierarchy, abstraction

Dec 7, 2011 Sprenkle - CSCI209 28

OH, THE PLACES YOU HAVE
BEEN!

What have you learned this semester?
What are you taking with you?

Dec 7, 2011 Sprenkle - CSCI209 29

CSCI209 Objectives
•  Talk about software development and practices

knowledgeably, using appropriate terminology
•  Design, implement, test, and document efficient

applications of increasing size and complexity
•  Understand designs and implementations of others
•  Use a version control system
•  Use many of the capabilities of the Eclipse IDE
•  Test and debug large applications systematically,

using standard tools
•  Understand design principles
•  Discuss benefits and limitations of a statically-typed

language
Dec 7, 2011 Sprenkle - CSCI209 30

12/7/11

6

My Philosophy

• Balance imparting knowledge and creating
learning experiences

• Goals
Ø Help you recognize bad design, fixes for it
Ø Learn to read others’ code—not just mine
Ø Transferrable skills

•  VCS, IDE use, abstraction, design
Ø Best practices of Java

•  Small assignments on Java specifics
•  Effective Java

Dec 7, 2011 Sprenkle - CSCI209 31 Dec 7, 2011 Sprenkle - CSCI209 32

Summary of Java Platform SE 6.0

Image from Oracle’s site 	

Remember from the first day of class?

Dec 7, 2011 Sprenkle - CSCI209 33

Summary of Java Platform SE 6.0
Remember from the first day of class?

Where Will You Go From Here?

• What do you think you’re most likely to take
with you?

• What will be your design philosophy?

Dec 7, 2011 Sprenkle - CSCI209 34

Project Notes

• Statistics usage
Ø How not used

• Project Analysis:
Ø Understand the others’ design/code/parts

•  At least at a high level
Ø Contents: Description, Planning, Status, Code

Analysis, Collaboration, Future Work
•  Complete specification online

• Possibility of Friday demos?
 Dec 7, 2011 Sprenkle - CSCI209 35

Course Evaluations

• Due Sunday @ midnight
• Two evaluations

Ø Standard for Computer Science dept
Ø Supplemental, specific to CSCI209

•  Incentive to fill out evaluations
Ø If 63% fill out, 1% EC on “Individual programming

and written homework assignments”
•  Additional 1% for every additional ~9% (each

student) who complete
•  1335 total points possible

Dec 7, 2011 Sprenkle - CSCI209 36

