
9/23/11

1

Objectives

• Polymorphism
Ø Dispatch

• Javadocs
• Eclipse

Sept 23, 2011 Sprenkle - CSCI209 1 Sept 23, 2011 Sprenkle - CSCI209 2

Review

• When should we make method static?
• How does Java pass parameters?
• How does a class refer to its parent class?
• What does a class inherit from its parent

class?
Ø What is not inherited?

• What are the access modes, ordered from
least restrictive to most restrictive?

Code Review

• What were the datatypes of your Birthday
class’s instance variables? Why?

• Why do I like this method?

• How could the method be improved?
Sept 23, 2011 Sprenkle - CSCI209 3

public void changeDay(int dayUpdate){	
 if ((dayUpdate < 32) && (dayUpdate > 0)) {	
	 	day = dayUpdate;	
	}	
	else {	

 System.out.println(dayUpdate + " is not a valid “
	 		 	+ “day");	

 }	
}	

Code Review: Good Use of switch
Statement

Sept 23, 2011 Sprenkle - CSCI209 4

public Birthday() {	
	int x = random.nextInt(12);	
	switch (x) {	
	case 1:	
	 	randDay = random.nextInt(29) + 1;	
	 	break;	
	case 3:	
	case 5:	
	case 8:	
	case 10:	
	 	randDay = random.nextInt(30) + 1;	
	 	break;	
	default:	
	 	randDay = random.nextInt(31) + 1;	
	 	break;	
	}	
	this.month = months[x];	
	this.day = randDay;	

}

What does this code do?	

Code Review

• Discuss this API and how it would be used

Sept 23, 2011 Sprenkle - CSCI209 5

public static void main(String[] args) {	
	Birthday birthday = new Birthday ("Sept", 25);	

 System.out.println("My birthday is " + 	
	 	birthday.getMonth() + birthday.getDay() + ".");	
	…	

}	
	
public String getMonth() {	

	return month + " ";	
}	

Code Review

• getMonth() probably does not behave as
user expects

Sept 23, 2011 Sprenkle - CSCI209 6

public static void main(String[] args) {	
	Birthday birthday = new Birthday ("Sept", 25);	

 System.out.println("My birthday is " + 	
	 	birthday.getMonth() + birthday.getDay() + ".");	
	…	

}	
	
public String getMonth() {	

	return month + " ";	
}	

if(birthday.getMonth().equals("September")) {	
	// print Happy Birthday Month!	

}	

9/23/11

2

Assignment 3 Feedback

• Always use @Override annotation
Ø Prevents accidental changes to method

signature, which would mean that you’re not
actually overriding the method

• Always document formatting for toString
and how determining equivalence for equals	

Sept 23, 2011 Sprenkle - CSCI209 7

POLYMORPHISM &
DISPATCH

Sept 23, 2011 Sprenkle - CSCI209 8

Sept 23, 2011 Sprenkle - CSCI209 9

Polymorphism

• You can use a child class object whenever
the program expects an object of the parent
class

• Object variables are polymorphic
• A Chicken object variable can refer to an

object of class Chicken, Rooster, Hen,
or any class that inherits from Chicken	

 Chicken[] chickens = new Chicken[3];	
chickens[0] = momma;	
chickens[1] = foghorn;	
chickens[2] = baby;	

We can guess the actual types	

But compiler can’t	

Sept 23, 2011 Sprenkle - CSCI209 10

Polymorphism

• We know chicken[1] is probably a
Rooster, but to compiler, it’s a Chicken so
	chicken[1].crow(); will not compile

Chicken[] chickens = new Chicken[3];	
chickens[0] = momma;	
chickens[1] = foghorn;	
chickens[2] = baby;	

Sept 23, 2011 Sprenkle - CSCI209 11

Polymorphism
• When we refer to a Rooster object through a
Rooster object variable, compiler sees it as a
Rooster object

•  If we refer to a Rooster object through a
Chicken object variable, compiler sees it as a
Chicken object.

• We cannot assign a parent class object to a
derived class object variable
Ø Ex: Rooster is a Chicken, but a Chicken is not

necessarily a Rooster	
Rooster r = chicken;	

à Object variable determines how compiler sees object.	

Sept 23, 2011 Sprenkle - CSCI209 12

Polymorphism

• Which method do we call if we call
chicken[1].feed()	
Rooster’s or Chicken’s?

Chicken[] chickens = new Chicken[3];	
chickens[0] = momma;	
chickens[1] = foghorn;	
chickens[2] = baby;	

9/23/11

3

Sept 23, 2011 Sprenkle - CSCI209 13

Polymorphism
• Which method do we call if we call
chicken[1].feed()	
Rooster’s or Chicken’s?

•  In Java (and Python): Rooster’s!
Ø Object is a Rooster	
Ø JVM figures out its class at runtime and runs the

appropriate method
• Dynamic dispatch

Ø At runtime, the object’s class is determined
Ø Then, appropriate method for that class is

dispatched
Sept 23, 2011 Sprenkle - CSCI209 14

Dynamic vs. Static Dispatch
• Dynamic dispatch is not necessarily a property

of object-oriented programming in general
• Some OOP languages use static dispatch

where the type of the object variable used to call
the method determines which version gets run

• The primary difference is when decision on
which method to call is made…
Ø Static dispatch (C#) decides at compile time
Ø Dynamic dispatch (Java, Python) decides at run time

• Dynamic dispatch is slow
Ø  In mid to late 90s, active research on how to

decrease time

Sept 23, 2011 Sprenkle - CSCI209 15

Feed the Chickens!

• Dynamic dispatch calls the appropriate
method in each case, corresponding to the
actual class of each object
Ø This is the power of polymorphism and dynamic

dispatch!

for(Chicken c: chickens) {	
	c.feed();	 		

}	
How to read this code?	

What happens in execution?	

Chicken[] chickens = new Chicken[3];	
chickens[0] = momma;	
chickens[1] = foghorn;	
chickens[2] = baby;	

Recall:

What Will This Code Output?

Sept 23, 2011 Sprenkle - CSCI209 16

class Parent {	
 public Parent() {}	
 	
 public void method1() {	
 System.out.println("Parent: method1"); 	
 }	
 	
 public void method2() {	
 System.out.println("Parent: method2");	
 method1();	
 } 	
}	
	
class Child extends Parent {	
 public Child() {}	
 	
 public void method1() {	
 System.out.println("Child: method1"); 	
 }	
}	

public class DynamicDispatchExample { 	
 public static void main(String[] args) {	
 Parent p = new Parent();	
 Child c = new Child();	
 	
 p.method1();	
 System.out.println("");	
	
 c.method1();	
 System.out.println("");	
 	
 p.method2();	
 System.out.println("");	
	
 c.method2();	
 System.out.println("");	
 }	
}	

See handout	

Sept 23, 2011 Sprenkle - CSCI209 17

Review: Inheritance Rules: Access
Modifiers

• Why?
• What would happen if a method in the parent

class is public but the child class’s method
is private	

Access modifiers in child classes	

• Can make access to child class less restrictive but not more
restrictive	

Sept 23, 2011 Sprenkle - CSCI209 18

Review: Inheritance Rules: Access
Modifiers

•  If a public method could be overridden as a
protected or private method, child objects would
not be able to respond to the same method calls as
parent objects à breaks polymorphism

• When a method is declared public in the parent, the
method remains public for all that class’s child
classes

•  Remembering the rule: compiler error to override a
method with a more restricted access modifier

Access modifiers in child classes	

• Can make access to child class less restrictive but not
more restrictive	

9/23/11

4

CASTING

Sept 23, 2011 Sprenkle - CSCI209 19 Sept 23, 2011 Sprenkle - CSCI209 20

Explicit Object Casting

• Just like we can cast variables:
	 	double pi = 3.14;	
	 	int i_pi = (int) pi;	
• We can cast objects
	Rooster foghorn = (Rooster) chickens[1];	

Ø Use casting to use an object in its full capacity
after its actual type (the derived class) has been
forgotten

Example: Explicit Object Casting
• Rooster object is referred to only using a
Chicken object variable
Ø chickens[1] is an object variable to a
Chicken object

Ø We cannot access any Rooster-specific fields
or methods using this object variable

• Create new object variable to Rooster
object
Ø This variable allows us to reference the Rooster-

specific fields and methods…

Sept 23, 2011 Sprenkle - CSCI209 21

Rooster rooster = (Rooster) chickens[1];	
Sept 23, 2011 Sprenkle - CSCI209 22

Object Casting
•  We can do explicit type casting because chickens[1]

refers to an object that is actually a Rooster object
•  For example, cannot do this with chickens[0]

because it refers to a Hen (not Rooster) object

•  Promising compiler that although chickens[1] is
an object variable to a Chicken object, it really
refers to a Rooster object,

•  If this is not the case, generates an exception
Ø More about exceptions later

Rooster rooster = (Rooster) chickens[1];	
 // OK; chickens[1] refers to a Rooster object	
Rooster hen = (Rooster) chickens[0];	
 // Run-time ERROR; chickens[0] refers to a Hen object	

Sept 23, 2011 Sprenkle - CSCI209 23

instanceof Operator

• Use instanceof operator to make sure
such a cast will succeed

• Operator returns a boolean	
Ø true iff chickens[1] refers to an object of type
Rooster	

Ø false otherwise

if (chickens[1] instanceof Rooster) {	
	rooster = (Rooster)chickens[1];	

} 	

Sept 23, 2011 Sprenkle - CSCI209 24

Summary of Inheritance
• Place common operations & fields in parent

class
Ø Remove repetitive code by modeling the “is-a”

hierarchy
Ø Move “common denominator” code up the

inheritance chain
• Don’t use inheritance unless all inherited

methods make sense
• Use polymorphism

9/23/11

5

JAVADOCS

Sept 23, 2011 Sprenkle - CSCI209 25

“Documentation is a love letter that you write to
your future self.” – Damian Conway	

Javadocs

• Special comments, which are used to
generate HTML documentation

• Syntax:

• Put before a class, a method, or a field to
describe the respective class/method/field

Sept 23, 2011 Sprenkle - CSCI209 26

/**	
 * Comment	
 */

Javadoc

• Can contain HTML syntax in description
• Example block tags to describe your code

Ø More that we’ll get to later

Sept 23, 2011 Sprenkle - CSCI209 27

@param <paramname> <description>	
@return <description> (include special cases)

Examples

Sept 23, 2011 Sprenkle - CSCI209 28

/**	
 * A simple Java class that models a Chicken. The 	
 * state of the chicken is its name, height, and weight	
 * 	
 * @author Sara Sprenkle	
 */

/**	
 * @return the height of the chicken, in centimeters	
 */

/**	
 * @param n the String representing the name of the
chicken	
 */

Expect these types of comments on all methods from now on	

Generating Javadocs

• From command-line:
javadoc [options] [packagenames]
[sourcefiles] [@files]	

• Or, using Eclipse …

Sept 23, 2011 Sprenkle - CSCI209 29 Sept 23, 2011 Sprenkle - CSCI209 30

9/23/11

6

• Open source integrated development
environment (IDE) for Java

• Has market share for Java IDEs
• Described as “an open extensible IDE for

anything and nothing in particular”
• Provides a robust Java development

environment
•  Incorporates popular software development

tools like JUnit and CVS
Ø More on those later this semester

• Plugins allow extensibility
Sept 23, 2011 Sprenkle - CSCI209 31

http://www.eclipse.org/	 Project/Code Organization

•  workspace directory contains all projects
Ø Located in your home directory, unless you

specified otherwise
• Use projects to organize your code
• Within a project

Ø src/ directory contains .java files
Ø bin/ directory contains .class files

•  Often hidden in GUI

Sept 23, 2011 Sprenkle - CSCI209 32

Java Made Easier
• Creating class’s basic functionality

Ø See Source and Refactor menus
• Gives you a list of methods for an object

Ø After you type object.
Ø Then shows parameters for methods

• Automatically creates template of Javadoc
Ø When you type /**	

• Autocompletion of variables, methods
• Formatting code …
• Shows unused fields/variables
• Shows compiler errors
• …

Sept 23, 2011 Sprenkle - CSCI209 33

Eclipse Demo
• Show Birthday class

Ø Override equals and toString methods
• Create a new class

Ø Generate Main method, Comments
•  Create a String object, see methods used

• Demonstrate refactoring
Ø Rename a field
Ø Extract a method (month name)

• Run the Birthday Class (main)
Ø Command line arguments

Sept 23, 2011 Sprenkle - CSCI209 34

Why can Eclipse provide this
functionality? (but Idle can’t?)	

Your Eclipse Practice

• Start up Eclipse
• Create a new Java project: Assign5	
• Create a new Java class: Test	

Ø Checkbox: Main method, comments
Ø Add an instance field: private int myVar;	
Ø Use Source menu to generate a constructor
Ø Use Source menu to generate toString	

Sept 23, 2011 Sprenkle - CSCI209 35

Installing at Home

• Go to www.eclipse.org	
• Select “Downloads”
• Then “Eclipse IDE for Java EE Developers”

Ø For developing web applications and other
enterprise applications

Sept 23, 2011 Sprenkle - CSCI209 36

9/23/11

7

Assignment 5

• Using Eclipse
• Creating an online library

Ø 5 classes of objects
Ø Driver program

• Could be tedious without IDE
• Due before Wednesday’s class

Ø Yes, two class periods away!
Ø But start early

Sept 23, 2011 Sprenkle - CSCI209 37

