
10/28/11

1

Objectives

•  Refactoring
•  Code Critique

Ø Identifying smells
Ø Refactoring for readability

Oct 28, 2011 Sprenkle - CSCI209 1

Start up Eclipse for later exercise	

Reflection on Project 1

• What were the difficult parts of Project 1?
•  Did they get any easier?
•  Did you develop a system or any techniques

to make the process easier?
•  In the future, how could you make the

process easier?
• What do you think of JUnit in Eclipse?

Oct 28, 2011 Sprenkle - CSCI209 2

Don’t forget what you’ve learned.	

Integrate testing into your development.	

Review

• What goal are we designing to?
• What are some principles of design in

Object-oriented Programming?

• What is the typical fix for code smells?
Ø What is a limitation of those fixes?

•  How do we address change in general?

Oct 28, 2011 Sprenkle - CSCI209 3

Literals or Magic Numbers

•  If a number has a special meaning, make it a
constant
Ø Distinguish between 0 and

NO_VALUE_ASSIGNED
Ø If value changes (-1 instead of 0), only one place

to change

Oct 28, 2011 Sprenkle - CSCI209 4

Eclipse: Refactor à Extract Constant	

Divergent Change & Shotgun Surgery

Divergent Change
•  Problem: one class

commonly changed in
different ways for different
reasons

•  Solution:
Ø  Identify changes for a

particular cause
Ø  Put into a class (extract)

Shotgun Surgery
•  Problem: a change

causes changes in many
classes

•  Solution:
Ø  Identify class that changes

should belong to

Oct 28, 2011 Sprenkle - CSCI209 5

Problem: when make a change,	

can’t identify single point in code to make change	

Goal: 1-to-1 mapping of common changes to classes	

Data Clumps

•  Problem: You have some data that always
“hangs out together”

•  Possible Solution: Maybe they should be an
object
Ø Check: if you deleted one of those pieces of

data, would the others make sense?
•  If answer is no, should be an object

Oct 28, 2011 Sprenkle - CSCI209 6

Eclipse: Refactor à Extract Class	

10/28/11

2

Message Chaining
•  Dynamic coupling:
 getOrder().getCustomer().getAddress().getState()	
•  Problem: client coupled to navigation

structure
Ø Depends on too many other classes
Ø Change to intermediate class à Change in this

class
•  Fix: add delegate method

Ø Example: add method getShippingState()	
Ø Can go too far if adding too many methods

Oct 28, 2011 Sprenkle - CSCI209 7

Eclipse: Check references	

 Refactor à Extract Method	

Middle Man

•  Issue: Many methods of one class are
delegating to another class

•  How could this happen?
Ø Refactoring!

•  Possible Solutions
Ø Inline method into caller
Ø If there is additional behavior, replace delegation

with inheritance to turn the middle man into a
subclass of the real object

Oct 28, 2011 Sprenkle - CSCI209 8

Lazy Class

•  Problem
Ø Class in question doesn’t do much
Ø Classes cost time and money to maintain and

understand
•  How could this happen?

Ø Refactoring!
Ø Planned to be implemented but never happened

•  Solution
Ø Get rid of class

•  Inline or collapse subclass into parent class
Oct 28, 2011 Sprenkle - CSCI209 9

Speculative Generality

•  Beware of too much abstraction, allowing for
too much flexibility that isn’t required

•  Solution: Collapse classes

Oct 28, 2011 Sprenkle - CSCI209 10

Comments

Ø Describe what the code or method is doing
Ø Should be reserved for why, not what

•  Solutions:
Ø If need a comment for a block of code (or a long

statement) à create a method with a descriptive
name

Ø If need a comment to describe method, rename
method with more descriptive name

Oct 28, 2011 Sprenkle - CSCI209 11

Problem: Comments used as Febreze to cover up smells	

These comments are different from API comments	

Olympics Scores Refactored

Oct 28, 2011 Sprenkle - CSCI209 12

public static void main(String argv[]) {	
	

	Scanner scan = new Scanner(System.in);	
	

	double difficulty_score =
getValidDifficultyScoreFromUser(scan);	
	

	double[] execution_scores = readScoresFromUserFile
(scan);	
	

	double exec_avg = calculateAverageExecutionScore
(execution_scores);	
	

	displayResults(difficulty_score, execution_scores,
exec_avg);	
}

10/28/11

3

More Code Smells

•  Discuss more code smells and solutions
(Design Patterns) later

Oct 28, 2011 Sprenkle - CSCI209 13

Rules of Thumb

•  Code smells are not always bad
Ø Do not always mean code is poorly designed

•  Open code is not always bad
•  Need to use your judgment

Ø Good judgment comes from experience.
Ø How do you get experience? Bad judgment

works every time

Oct 28, 2011 Sprenkle - CSCI209 14

Goal: Gain experience to improve your judgment	

Refactoring Practice

Oct 28, 2011 Sprenkle - CSCI209 15

if (type.equals("topic")){	
	String array[] = new String[2];	
	for (int i = 0; i < bookNum; i++){	
	 	Book currentBook = books.get(i);	
	 	if (currentBook.getTopic().equals(argument)){	
	 	 	flag += 1;	
	 	 	array[0] = "true";	
	 	 	if (flag == 1) //if we append each time, there will	
	 	 	 	 	// be a 'null' at the beginning	
	 	 	 	array[1] = "Title: " + currentBook.getTitle() + "\n" +	
	 	 	 	 	"Item Number: " + currentBook.getItemNumber();	
	 	 	else array[1] += "Title: " + currentBook.getTitle() + 	
	 	 	 	"\n" + "Item Number: " + currentBook.getItemNumber();	

 	}	
 }	
 if (flag == 0){	
 	array[0] = "false";	
	 	array[1] = "No items match your query\n”;	
	}	

}

Bookstore application	

 Refactoring Practice

Oct 28, 2011 Sprenkle - CSCI209 16

if prompt.split(" ")[0] == "buy" and nextCond == False:	
	result = server.FrontEnd.buy(int(prompt.split(" ")[1]))	

 	array = server.FrontEnd.lookup(int(prompt.split(" ")[1]))	
	
 	if result == True:	
 nextCond = True	
 print "bought book " + str(array[0])	
 	
 	else:	
 nextCond = True	
 print "Book out of stock or doesn't exist"	

Refactoring is a general concept: applies to Python too!	

CODE CRITIQUE
Refactoring for Readability

Oct 28, 2011 Sprenkle - CSCI209 17

Refactoring for Readability

Oct 28, 2011 Sprenkle - CSCI209 18

“Any fool can write code that ���
a computer can understand. ���
Good programmers write code that
humans can understand.” 	

-- Martin Fowler	

"Refactoring: Improving the
Design of Existing Code"	

10/28/11

4

Bin-Fitting Problem

•  Classic CS problem: fit as many of
something (A) into as few (B) as possible

•  Example
Ø A: Files, which have a size
Ø B: CDs or DVDs (Disks)

Oct 28, 2011 Sprenkle - CSCI209 19

File File File

How could we solve
this problem?	

Another example: ���
jobs on CPUs	

One Heuristic: Worst Fit

•  General idea: Store file in disk with most free
space

•  In-order worst fit
Ø Put files on disk, in order seen

•  In-decreasing-order worst fit
1.  Sort files by size
2.  Put on disks

Oct 28, 2011 Sprenkle - CSCI209 20

Worst Fit:
Finding Disk With Most Free Space

•  Keep disks in sorted order by their free
space
Ø Java class: PriorityQueue	

•  Uses compareTo method or Comparator	

Oct 28, 2011 Sprenkle - CSCI209 21

Getting A Solution

•  Import à General à Existing project into
Workspace
Ø Archive file:
 /home/courses/cs209/handouts/bins.tar	

•  Try running Bin.java
Ø Run options
Ø Argument: data/example.txt

Oct 28, 2011 Sprenkle - CSCI209 22

Refactoring Discussion

Looking at Bins main method on handout…
•  How clearly written is the code?
• What, if any, comments might be helpful

within the code?
•  Does it satisfy its role as a tutorial?
• What, if any, suggestions does this code

make about how the remaining parts will be
written?

•  How would you test this code for bugs?
Oct 28, 2011 Sprenkle - CSCI209 23

Pair Discussion of Bins Solution

• What does the code do?
Ø What is the purpose/responsibility of each class?

• What are the good parts of the code?

• What are some of the code smells?

Oct 28, 2011 Sprenkle - CSCI209 24

10/28/11

5

Notes on Assignment 9

•  No “right” answer
Ø Many design decisions
Ø Defend your design decision in code critique

Oct 28, 2011 Sprenkle - CSCI209 25

No refactoring	

 Lots of refactoring	

Iterate

Bins Assignment	

Focus: Readability	

Assignment 9: Code Critique &
Refactoring

•  Given: a problem specification and a solution to
the problem
Ø Refactoring your own code is emotional
Ø More objective with someone else’s solution

•  Goals
Ø Read and understand someone else’s code

•  Haven’t done much of this in Java
Ø Critique code (do you smell something?)

•  Identify, articulate problems
Ø Refactor code to solve problems identified
Ø Write tests to verify the code

Oct 28, 2011 Sprenkle - CSCI209 26
Due Wed	

TODO

•  Assignment 9
•  Extra Credit Opportunity

Ø Leyburn Library, 1:30 – 2:30 p.m. today
Ø Ask CS students about their summer research
Ø 5 pts per poster
Ø Send me email about

•  What is the problem they are trying to solve?
Ø Motivation for solving problem

•  What was the biggest challenge they had to try to
solve?

Oct 28, 2011 Sprenkle - CSCI209 27

