Objectives

Design Patterns
Midterm Review

Nov 12, 2008 Sprenkle - CS209 1

Assignment 12 Discussion

Nov 12, 2008 Sprenkle - CS209 2

Review

How can we avoid writing lots of empty
methods when we implement listeners?

What is the relationship between low-level
events and semantic events?
What is a design pattern?

What is the common theme to all our design
principles/solutions?

Nov 12, 2008 Sprenkle - CS209 3

Follow-up: Window Events

WindowEventDemo. java

Nov 12, 2008 Sprenkle - CS209 4

Follow Up: Compiler’s Names of Classes

Anonymous class names
ClassName$#.class

Look inside <workspace_dir>/
ScreenSavers/bin/screensaver/nomodify

Nov 12, 2008 Sprenkle - CS209

Review: Design Pattern

General reusable solution to a commonly
occurring problem in software design

Not a finished design that can be transformed
directly into code

Description or template for how to solve a
problem that can be used in many different
situations

Nov 12, 2008 Sprenkle - CS209 6

Review: Factory Method Pattern

Product Creator
factoryMethod()
T anOperation()
ConcreteProduct e ConcreteCreator
factoryMethod()
UML Diagram

Nov 12, 2008 Sprenkle - CS209 7

Review: Dependency Inversion Principle

Depend upon abstractions.

Do not depend upon concrete classes.
High-level components should not depend on
low-level components

» Both should depend on abstractions
Abstractions should not depend upon details.
Details should depend upon abstractions
“Inversion” from the way you think
Other techniques besides Factory Method for
adhering to principle

Nov 12, 2008 Sprenkle - CS209 8

Dependency Inversion Principle

Depend upon

abstractions

Nov 12, 2008 Sprenkle - CS209 9

Motivating Example

Birds

~ Various flying behaviors (some fly, some don’t)
» Make different sounds

How would we create classes to represent
different birds?

Nov 12, 2008 Sprenkle - CS209 10

Designing Flexible Behaviors

Include behaviors in abstract Bird class

» FlyBehavior, ChirpBehavior interface

» performFly(), makeSound() methods
Could have setter methods in Bird class to
change these

~ Example: bird gets wings clipped

Nov 12, 2008 Sprenkle - CS209 "

Design Pattern: Strategy
Defines a family of algorithms, encapsulates
each one, and makes them interchangeable

Lets algorithm/behavior vary independently
from clients that use it
» Allows behavior changes at runtime

Design Principle:

Favor composition over
inheritance

Nov 12, 2008 Sprenkle - CS209 12

Design Pattern: Observer

Defines a 1-to-many dependency between
objects

When one object changes state, all of its
dependents are notified and updated
automatically

Subject

Automatic update/

Object that notification Dependent Objects
holds state
Nov 12, 2008 Sprenkle - CS209 13

Observer Pattern

Subject F—-—-—-» Observer
registerObserver() update()
removeObserver()
notifyObservers()

ConcreteSubject ConcreteObserver
registerObserver() update()
removeObserver() //observer-specific
notifyObservers() // methods
getState()
setState()

Nov 12, 2008 Sprenkle - CS209 14

Design Principle: Loose Coupling

Strive for loosely coupled designs between
objects that interact
Loosely coupled objects can interact but have
very little knowledge of each other

Minimize dependency between objects

More flexible systems

Handle change

Nov 12, 2008 Sprenkle - CS209 15

Model - Viewer - Controller (MVC)

A common design pattern for GUIs

Separate
Model: application data
View: graphical representation
Controller: input processing

Modifies B Notifies
Model

Nov 12, 2008 Sprenkle - CS209 16

Model-Viewer-Controller

Can have multiple viewers and controllers
Goal: modify one component without

affecting others

Direct associations

Model

Nov 12, 2008 Sprenkle - CS209 17

Model

Code that carries out some task
Nothing about how view presented to user
Purely functional

Must be able to register views and notify
views of changes

Nov 12, 2008 Sprenkle - CS209 18

Multiple Views

Provides GUI interface components for model
Look & Feel of the application

User manipulates view
Informs controller of change

Example of multiple views: spreadsheet data

Rows/columns in spreadsheet
Pie chart

Nov 12, 2008 Sprenkle - CS209

Example: Music Player
* Use interface

User « Actions go to controller

Display is updated

“Play new song

* See the song display
update

+ Hear new song
playing

Controller

Model)
1 Plaver manipulates
Model tells viewnthat cLass Yy model
state has changed pl_ay O
ripQ Contains state, data,
Nov 12, 2008 export() application logic 21

Controller(s)

Takes user input and figures out what it

means to the model
Makes decisions about behavior of model based
on Ul

Update model as user interacts with view
Calls model's mutator methods

Views are associated with controllers

Nov 12, 2008 Sprenkle - CS209 20

MVC: Combination of Design Patterns

Nov 12, 2008 Sprenkle - CS209 22

MVC: Combination of Design Patterns

Observer
Views, Controller notified of Model’s state changes

Strategy
View can plug in different controllers
View does not know how model gets updated
Composite
View is a composite of GUI components
Top-level component learns about update, updates
components

23

Nov 12, 2008 Sprenkle - CS209

Code Analysis

Consider GUIs we’ve seen
Which use the MVC pattern?
Identify M, V, and C in applicable GUIs

Nov 12, 2008 Sprenkle - CS209 24

ASSIGNMENT 10

Nov 12, 2008 Sprenkle - CS209 25

Excerpts from Good Critiques

Unfortunately, because of the linear style of
programming used by the original author, we can’t
debug this program quickly or efficiently.
Debugging would basically consist of checking to
make sure that each section of the code works as
intended, which means we’d have to test the code
basically by every 10 lines or so....

Nov 12, 2008 Sprenkle - CS209 26

Excerpts from Good Critiques

Added a static field “ID” to track the ID of a disk
rather than wasting the extra code lines of having
an extra constructor to specify the ID and forcing
[others to] track the IDs of the disks it is creating...

The downside of this approach is that we can’t
directly specify what we want the ID of a disk to be.
On the other hand, it is a much more direct and
efficient way to ensure that we are always getting a
unique set of IDs for a set of disks.

Nov 12, 2008 Sprenkle - CS209 27

Excerpts from Good Critiques

The majority of the bin-fitting process was handled
inside the main method. This probably made the
code easy to write, but is disadvantageous for a
number of reasons:

Readability: ...

Maintainability: ...

Testing: unit testing does not break down into small

pieces to test. There is just one big main method

Debugging: ...

Nov 12, 2008 Sprenkle - CS209 28

Excerpts from Good Code Critiques

After looking back over the code and the changes
I've made, | think there will almost always be more
changes possible. For example, the code for the
different heuristic types could be extracted to a
separate class thats [sic] only job is to define the
heuristics.

Also, the Disk class could be changed to
accommodate any type of storage media, not just
DVDs.

Nov 12, 2008 Sprenkle - CS209 29

Excerpts from Good Critiques

| thought about how this program is likely to change.
Right now we have two different methods to fit files
onto disks; however, these two are certainly not the
only two methods, and in the future perhaps we will
want to use other methods in the Bins class. For
this reason, | decided to make the fitFilesToDisk
method abstract in the Bins class and to make a
WorstFit class that inherits from the Bin class....

Nov 12, 2008 Sprenkle - CS209 30

Reviewing Refactoring: Bins

Improving Solutions

Original Solution Expected solution:

Bins Class
Static Methods Abstract Bins Class
- Heuristics Changing
Nov 12, 2008 Sprenkle - CS209 31

Review: JUnit Testing Project

Good for the most part
Got most of the correct implementation/’normal”
behavior
At least some of the bad implementation/"error”
behavior
Small/narrow test cases
Good naming of test cases
Common problems
Not using Car’s gear constants
Not checking erroneous input
Insufficient spec: Car in PARK when refueling?
Sometimes inappropriate expected exceptions

Nov 12, 2008 Sprenkle - CS209

Midterm Prep

Document posted online
Software Development
Models
Testing
Design Principles
Code smells
Refactoring
GUI programming
Event handling, inner classes, animation
Jar files
Unix commands

Nov 12, 2008 Sprenkle - CS209 33

Questions About Midterm

Nov 12, 2008 Sprenkle - CS209

