
11/18/11

1

Objectives

•  Version Control
•  Parsing commands

Nov 18, 2011 Sprenkle - CSCI209 1

Review

• Who are your teammates for the final
project?

• What is the final project?
•  How does an interpreter execute a

programming language?

Nov 18, 2011 Sprenkle - CSCI209 2

SLogo Project Overview

•  Goal: Create an IDE for simplified version of
Logo

•  Logo: programming language designed to
teach children to program
Ø Low floor, high ceiling

Nov 18, 2011 Sprenkle - CSCI209 3

Interpreting User’s Input

Nov 18, 2011 Sprenkle - CSCI209 4

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree	

Interpreter

User’s
Input

Token Token Tokens

OR	

OR	

Evaluation of
expression	

Draw on
canvas	

FORWARD SUM 10 10	

VERSION CONTROL

Nov 18, 2011 Sprenkle - CSCI209 5

Problems in Collaborating on Code

Nov 18, 2011 Sprenkle - CSCI209 6

Design

Evaluate Implement

Creating many
prototypes	

- What if don’t like
recent prototype?	

Need to go back to
older version	

•  Different parts (e.g., user
interface and backend)	

•  > 1 developer implementing
concurrently	

- What if one introduces a
bug?	

Developers	

11/18/11

2

Version Control Features
•  Synchronization

Ø  Lets people share files
Ø Stay up-to-date with the latest version

•  Backup and Restore
Ø Files are saved as they are edited
Ø Revert to a specific version/checkpoint

•  Track changes to code
Ø Save comments explaining why change happened
Ø Stored in the VCS, not the file
Ø Track how, why a file evolves over time

•  Track ownership
Ø Tags every change with the name of the person who

made it

Nov 18, 2011 Sprenkle - CSCI209 7

Version Control Features
•  Short-term undo

Ø Messed up a file? Go back to the last good version
•  Long-term undo

Ø Created a bug a year ago? Jump back to see
change you made.

•  Sandboxing
Ø Making a big change? Make temporary changes in

isolated area, test, work out kinks before “checking
in” your changes

•  Branching and merging
Ø Branch a copy of your code into a separate area,

modify it in isolation (tracking changes separately)
Ø Later, merge work into common area

Nov 18, 2011 Sprenkle - CSCI209 8

Version Control Systems

•  Popular Version Control Systems
Ø CVS, Subversion, Git, …

•  Terms used are common for most version
control systems

• We will use Subversion with Subclipse
Ø Mark Phippard, a W&L grad works on both

•  Director of the Subversion engineering team at
CollabNet, the company that founded Subversion

Nov 18, 2011 Sprenkle - CSCI209 9

Using Version Control

Nov 18, 2011 Sprenkle - CSCI209 10

Repository

•  Keeps public copy of code:
versions of all files,
comments about changes,
who made changes

•  Have own copy of codeà
“Working Copy”

•  Checkout, commit,
update code

Users

Code

Code

Using Version Control: checkout	
•  To start, need to checkout your working

copy of the code

Nov 18, 2011 Sprenkle - CSCI209 11

Repository

checkout	
Code

Code
Current version���

 of all files	

Using Version Control: commit	
•  After you make changes that you want others

to see, commit your version
Ø Include comments about what changes you

made and why

Nov 18, 2011 Sprenkle - CSCI209 12

Repository

•  Checks for conflicts
•  Updates each modified file
•  Records comments with

updated files

commit	

Code* comments?
comments

Code

11/18/11

3

Using Version Control: commit	
•  After you make changes that you want others

to see, commit your version
Ø Include comments about what changes you

made and why

Nov 18, 2011 Sprenkle - CSCI209 13

Repository

•  Checks for conflicts
•  Updates each modified file
•  Records comments with

updated files

commit	

Code* comments?
comments

Code

Code’

Other people’s code
doesn’t change

Using Version Control: commit	
•  After you make changes that you want others

to see, commit your version

Nov 18, 2011 Sprenkle - CSCI209 14

Repository

•  Checks for conflicts:
code conflicts with recent
changes in the public copy

commit	
Code*

conflicts
Code*

•  Update code, fix
conflicts

•  Try commit again

Using Version Control: update	
•  To see the current version of the code,
update your repository
Ø Resolve conflicts

Nov 18, 2011 Sprenkle - CSCI209 15

Repository
update	

Code
code

Using Version Control: add,
delete	
•  You need to add and delete files and

directories to the repository, then commit	

Nov 18, 2011 Sprenkle - CSCI209 16

Repository
commit	

Code

•  Add, delete files
and directories

•  Commit

•  Create new records for added files
•  Close records for deleted files

•  Files not deleted from repository

Version Control Advice

•  Does not eliminate need for communication
Ø Process becomes much more difficult if

developers do not communicate
•  Before picking up again, update your

working copy
•  Commit only after you’ve tested code and

you’re fairly sure it works
Ø Write descriptive comments so your team

members know what you did and why

Nov 18, 2011 Sprenkle - CSCI209 17

Code Organization

•  Organize code into appropriate structure

Nov 18, 2011 Sprenkle - CSCI209 18

MyProject	

branches	 tags	 trunk	

dir	 file	

Main line of
development	

Named snapshots ���
of code	

Active variations ���
of the trunk	

11/18/11

4

SUBCLIPSE

Nov 18, 2011 Sprenkle - CSCI209 19

Subclipse

•  Plugin for Eclipse
•  Installation:

Ø Help à Install New Software
Ø Create remote site:

•  Name: Subclipse
• http://subclipse.tigris.org/
update_1.6.x	

•  Select all those packages

Nov 18, 2011 Sprenkle - CSCI209 20

Checking Out Code in Eclipse
•  In SVN Repository view, create a new SVN

repository:
Ø File à New à Other à SVN
Ø Repository:
file:///home/courses/cs209/shared/
svn_repo/	

Ø  If you want to connect from your home computer:
svn+ssh://knuth.cs.wlu.edu/home/courses/
cs209/shared/svn_repo/	

•  Checkout SLogo<gradyear>/trunk from
repository
Ø As a new Java project (Wizard)
Ø Java project, named SLogo

Nov 18, 2011 Sprenkle - CSCI209 21

No angle
brackets	

Checking Out Code in Eclipse

•  If many compiler errors in tests, may
need to add JUnit to classpath
Ø Configure Build Path
Ø Libraries, Add Library

•  JUnit 4

Nov 18, 2011 Sprenkle - CSCI209 22

Practice with Subclipse
•  Create file named with your name
•  Put some text into it
•  Add the file to the Repository:

Ø Right-click on the file you created à Team à Add
•  Commit your file (Save for group to see)

Ø Right-click on top-level directory/project à Team à
Commit

Ø Add an appropriate comment
•  Update your repository (Get latest working version)

Ø Right-click on top-level directory/project à Team
àUpdate

Ø Do you have any one else’s files?

Nov 18, 2011 Sprenkle - CSCI209 23

UNDERSTANDING A CODE
BASE

Nov 18, 2011 Sprenkle - CSCI209 24

11/18/11

5

Code Review

• What questions do you have about the code?
• What do you want to find out?

Nov 18, 2011 Sprenkle - CSCI209 25

Understanding the Code

•  How does the given code map to lexical
analysis, semantic analysis, and evaluation
components?

Nov 18, 2011 Sprenkle - CSCI209 26

Interpreting User’s Input

Nov 18, 2011 Sprenkle - CSCI209 27

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree	

Interpreter

User’s
Input

Token Token Tokens

OR

OR

Evaluation of
expression	

Draw on
canvas	

tokens	

parser	
expressions/instructions	

Java’s StreamTokenizer	

Understanding the Code:
Lexical Analysis
•  Important classes

Ø slogo.jelan.parser.ElanInterpeter	
Ø slogo.jelan.parser.tokens.TokenFacto
ry	

•  Output: slogo.jelan.parser.tokens.*	
	

Nov 18, 2011 Sprenkle - CSCI209 28

PrintToken	
EqualToken	
AssignmentToken	

Understanding the Code:
Semantic Analysis
•  Important Classes

Ø Common interface:
slogo.jelan.parser.Parser	

Ø slogo.jelan.parser.*Parser	
•  Ex:
slogo.jelan.parser.ExpressionParser	

Ø slogo.jelan.parser.InstructionParser	
•  Decides which instruction parser to call	

•  Output: slogo.jelan.expressions.* or
slogo.jelan.instructions.*	

Nov 18, 2011 Sprenkle - CSCI209 29
PrintParser, AssignmentParser	

Understanding the Code:
Evaluation
•  Important Classes

Ø Base class: slogo.jelan.GrammarElement	
Ø Subclasses:	
• slogo.jelan.instructions.Instruction	
• slogo.jelan.expression.Expression	

•  Output: Object	

Nov 18, 2011 Sprenkle - CSCI209 30

Print	
Assignment	

11/18/11

6

Bringing it together

• slogo.jelan.*	
Ø Breaks classes into appropriate packages:

Tokens, Expressions, Instructions, Parsers
• slogo.jelan.parser

Ø Parse Tokens to create Instructions
• slogo.jelan.instructions

Ø Represent instructions
Ø evaluate method

Nov 18, 2011 Sprenkle - CSCI209 31

Bringing it together

•  Mapping between Token, Instruction,
Parser	
Ø Knows which Parser to call based on

instructions.prop and mapping from Token to
Parser

•  Run ElanInterpreter with tests/
assign_repeat	

Nov 18, 2011 Sprenkle - CSCI209 32

Practice Adding Instructions
1. Create a token for instruction

Ø Likely a subclass of token.ReservedToken	
Ø Same prefix as new instruction, e.g., IfToken.java	

2. Create a parser for the instruction with same
prefix as instruction, e.g., IfParser.java	
Ø Parsing class (presumably implementing Parser)

returns an instance of parsed Instruction
3. Create an instruction with prefix name, e.g.,

If.java	
4. Add instruction name to file

instructions.prop, e.g., add a single line to
file containing string If

Nov 18, 2011 Sprenkle - CSCI209 33

Brainstorming
•  What do you need to do to complete the

project?
•  What do you “see” for the final project?
•  What’s going to change?
•  Where do you think you’ll run into problems?
•  To focus your thinking, consider this use case:

"The user starts the program, types 'fd 50' in the
command window, and sees the turtle move in
the display window leaving a trail.”
Ø What are other use cases?

Nov 18, 2011 Sprenkle - CSCI209 34

Preparation Analysis
•  What are the main parts/steps that need to be completed to

complete the project?
Ø  How much work does each part require?

•  Approximate in terms of time or relative to the other steps.
Ø  How many people should work on each part?

•  How will your program handle the following use case: "The user
starts the program, types 'fd 50' in the command window, and
sees the turtle move in the display window leaving a trail.”?
Ø  From your description, it should be clear which classes/objects are

responsible for completing each part of the task.
•  What 3 extensions would you like to have in the final application?
•  A plan for how you would tackle implementing the project

Ø  What parts can be completed independently of the other parts?
Ø  What parts need to be completed before other parts?

•  The parts of the project you're most interested in working on, in
ranked order.

•  Any questions about the given specification.
Nov 18, 2011 Sprenkle - CSCI209 35

Due Monday ���
after Thanksgiving	

 TODO

•  Project Analysis due Monday after
Thanksgiving

Nov 18, 2011 Sprenkle - CSCI209 36

