Objectives

Polymorphism
Dispatch

Javadocs

Eclipse

Sept 23, 2011 Sprenkle - CSCI209 1

Review

When should we make method static?
How does Java pass parameters?
How does a class refer to its parent class?

What does a class inherit from its parent
class?

What is not inherited?

What are the access modes, ordered from
least restrictive to most restrictive?

Sept 23, 2011 Sprenkle - CSCI209 2

Code Review

What were the datatypes of your Birthday
class’s instance variables? Why?

Why do | like this method?

public void changeDay(int dayUpdate){
if ((dayUpdate < 32) & (dayUpdate > @)) {
day = dayUpdate;

else {
System.out.println(dayUpdate + " is not a valid “
+ “day™;
}
}
How could the method be improved?
Sept 23, 2011 Sprenkle - CSCI209 3

Code Review: Good Use of switch

Statement

public Birthday() {
int x = random.nextInt(12);
switch (x) {
case 1:
randDay = random.nextInt(29) + 1;
break;

case 3: What does this code do?

case 5:
case 8:
case 10:
randDay = random.nextInt(30) + 1;
break;
default:
randDay = random.nextInt(31) + 1;
break;

this.month = months[x];
this.day = randDay;
Se} 4

Code Review

public static void main(String[] args) {
Birthday birthday = new Birthday ("Sept", 25);

System.out.println("My birthday is " +
birthday.getMonth() + birthday.getDay() + ".");

}

public String getMonth() {

return month + " ";

Discuss this APl and how it would be used

Sept 23, 2011 Sprenkle - CSCI209 5

Code Review

public static void main(String[] args) {
Birthday birthday = new Birthday ("Sept", 25);

System.out.println("My birthday is " +
birthday.getMonth() + birthday.getDay() + ".");

}
public String getMonth() {

return month + ;

getMonth() probably does not behave as
user expects

if(birthday.getMonth().equals("September")) {
// print Happy Birthday Month!

Sept 23, !

Assignment 3 Feedback

Always use @0verride annotation

Prevents accidental changes to method
signature, which would mean that you're not
actually overriding the method

Always document formatting for toString
and how determining equivalence for equals

Sept 23, 2011 Sprenkle - CSCI209 7

POLYMORPHISM &
DISPATCH

Sept 23, 2011 Sprenkle - CSCI209 8

Polymorphism

You can use a child class object whenever
the program expects an object of the parent
class

Object variables are polymorphic

A Chicken object variable can refer to an
object of class Chicken, Rooster, Hen,
or any class that inherits from Chicken

Chicken[] chickens = new Chicken[3];

chickens[@] = momma;
chickens[1] = foghorn; We can guess the actual types
chickens[2] = baby; But compiler can’t

Sept23, 2011 ‘Sprenkie = CSCI209 9

Polymorphism

Chicken[] chickens = new Chicken[3];
chickens[@] = momma;

chickens[1] foghorn;

chickens[2] baby;

We know chicken[1] is probably a
Rooster, but to compiler, it's a Chicken so

chicken[1].crow(); will not compile

Sept 23, 2011 Sprenkle - CSCI209 10

Polymorphism

When we refer to a Rooster object through a
Rooster object variable, compiler sees it as a
Rooster object

If we refer to a Rooster object through a
Chicken object variable, compiler sees it as a
Chicken object.

-> Object variable determines how compiler sees object.
We cannot assign a parent class object to a

derived class object variable
Ex: Rooster is a Chicken, but a Chicken is not

necessarily a Rooster
Rooster 1cken;
Sept 23, 2011 Sprenkle - CSCI20! "

Polymorphism

Chicken[] chickens = new Chicken[3];
chickens[@] = momma;

chickens[1] foghorn;

chickens[2] baby;

Which method do we call if we call
chicken[1].feed()
Rooster’s or Chicken’s?

Sept 23, 2011 Sprenkle - CSCI209 12

Polymorphism

Which method do we call if we call
chicken[1].feed()

Rooster’s or Chicken’s?

In Java (and Python): Rooster’s!

» Object is a Rooster

» JVM figures out its class at runtime and runs the
appropriate method

Dynamic dispatch
» At runtime, the object’s class is determined

» Then, appropriate method for that class is
dispatched

Sept 23, 2011 Sprenkle - CSCI209 13

Dynamic vs. Static Dispatch

Dynamic dispatch is not necessarily a property
of object-oriented programming in general
Some OOP languages use static dispatch
where the type of the object variable used to call
the method determines which version gets run
The primary difference is when decision on
which method to call is made...

» Static dispatch (C#) decides at compile time

» Dynamic dispatch (Java, Python) decides at run time
Dynamic dispatch is slow

» In mid to late 90s, active research on how to
decrease time

Sept 23, 2011 Sprenkle - CSCI209 14

Feed the Chickens!

Chicken[] chickens = new Chicken[3];
Recall: chickens[@] = momma;

chickens[1] ; foghorn;
chickens[2] = baby;
for(Chicken c: chickens) {
c.feed(); How to read this code?
1 What happens in execution?

Dynamic dispatch calls the appropriate

method in each case, corresponding to the

actual class of each object

» This is the power of polymorphism and dynamic
dispatch!

Sept 23, 2011 Sprenkle - CSCI209 15

What Will This Code Output?

class Parent {
public Parent() {}

public void method1() {
System.out.println("Parent: methodl");
public class DynamicDispatchExample {
public static void main(String[] args) {
Parent p = new Parent();
Child ¢ = new ChildQ);

public void method2()
System.out.printli

method1();
¥ p.method1();
} System.out.println("");
class Child extends Pareni c.method1();
public Child() {} System.out.println("");
public void method1() p.method2();
System.out.printli System.out.println("");
} c.method2();
System.out.println("");
See handout }
Sept 23, 2011 }

Review: Inheritance Rules: Access
Modifiers

Access modifiers in child classes
» Can make access to child class less restrictive but not more
restrictive

Why?
What would happen if a method in the parent
class is public but the child class’s method
is private

Sept 23, 2011 Sprenkle - CSCI209 17

Review: Inheritance Rules: Access
Modifiers

Access modifiers in child classes
» Can make access to child class less restrictive but not
more restrictive

If a public method could be overridden as a
protected or private method, child objects would
not be able to respond to the same method calls as
parent objects > breaks polymorphism

When a method is declared public in the parent, the
method remains public for all that class’ s child
classes

Remembering the rule: compiler error to override a
method with a more restricted access modifier

Sept 23, 2011 Sprenkle - CSCI209 18

CASTING

Sept 23, 2011 Sprenkle - CSCI209 19

Explicit Object Casting

Just like we can cast variables:
double pi = 3.14;
int i_pi = (int) pi;
We can cast objects
Rooster foghorn = (Rooster) chickens[1];

» Use casting to use an object in its full capacity
after its actual type (the derived class) has been
forgotten

Sept 23, 2011 Sprenkle - CSCI209 20

Example: Explicit Object Casting

Rooster object is referred to only using a
Chicken object variable

» chickens[1] is an object variable to a
Chicken object

» We cannot access any Rooster-specific fields
or methods using this object variable

Create new object variable to Rooster
object

» This variable allows us to reference the Rooster-
specific fields and methods...

Rooster rooster = (Rooster) chickens[1];

Sept 23, 2011 Sprenkle - CSCI209 21

Object Casting

We can do explicit type casting because chickens[1]
refers to an object that is actually a Rooster object
For example, cannot do this with chickens[@]
because it refers to a Hen (not Rooster) object

Rooster rooster = (Rooster) chickens[1];

// O0K; chickens[1] refers to a Rooster object
Rooster hen = (Rooster) chickens[0];

// Run-time ERROR; chickens[@] refers to a Hen object

Promising compiler that although chickens[1] is
an object variable to a Chicken object, it really
refers to a Rooster object,

If this is not the case, generates an exception
» More about exceptions later

Sept 23, 2011 Sprenkle - CSCI209 22

instanceof Operator

Use instanceof operator to make sure
such a cast will succeed

if (chickens[1] instanceof Rooster) {
rooster = (Rooster)chickens[1];

Operator returns a boolean

> true iff chickens[1] refers to an object of type
Rooster

» false otherwise

Sept 23, 2011 Sprenkle - CSCI209 23

Summary of Inheritance

Place common operations & fields in parent
class

> Remove repetitive code by modeling the “is-a”
hierarchy

> Move “common denominator” code up the
inheritance chain

Don’t use inheritance unless all inherited
methods make sense

Use polymorphism

Sept 23, 2011 Sprenkle - CSCI209 24

JAVADOCS

“Documentation is a love letter that you write to
your future self.” — Damian Conway

Sept 23, 2011 Sprenkle - CSCI209 25

Javadocs
Special comments, which are used to
generate HTML documentation
Syntax:

Jx*
* Comment
L

Put before a class, a method, or a field to
describe the respective class/method/field

Sept 23, 2011 Sprenkle - CSCI209 26

Javadoc

Can contain HTML syntax in description
Example block tags to describe your code

param <paramname> <description>

@return <description> (include special cases) %

startsWith
public boolean startsWith(String prefix)

Tests if this string starts with the specified prefix.

Parameters:
prefix - the prefix.
Returns:
true if the character sequence represented by the argument is a prefix of the character sequgnce
represented by this string; fa1se otherwise. Note also that true will be returned if the argul
empty string or is equal to this string object as determined by the equals (object) method.

Sept 23, 2011 Sprenkle - CSCI209 27

Examples

/**

* A simple Java class that models a Chicken. The

* state of the chicken is its name, height, and weight
*

* @author Sara Sprenkle

Y/

/**
* @return the height of the chicken, in centimeters
&7

/**

* @param n the String representing the name of the
chicken

U

sept 2 Expect these types of comments on all methods from now on

Generating Javadocs

From command-line:

javadoc [options] [packagenames]
[sourcefiles] [@files]

Or, using Eclipse ...

Sept 23, 2011 Sprenkle - CSCI209 29

@

Sept 23, 2011 Sprenkle - CSCI209 30

% http://waww.eclipse.org/

Open source integrated development
environment (IDE) for Java

Has market share for Java IDEs
Described as “an open extensible IDE for
anything and nothing in particular”
Provides a robust Java development
environment

Incorporates popular software development
tools like JUnit and CVS

» More on those later this semester

Plugins allow extensibility

Sept 23, 2011 Sprenkle - CSCI209

31

Project/Code Organization

workspace directory contains all projects

» Located in your home directory, unless you
specified otherwise

Use projects to organize your code
Within a project
» src/ directory contains .java files
> bin/ directory contains .class files
Often hidden in GUI

Sept 23, 2011 Sprenkle - CSCI209 32

Java Made Easier

Creating class’s basic functionality
> See Source and Refactor menus
Gives you a list of methods for an object
> After you type object.
» Then shows parameters for methods
Automatically creates template of Javadoc
» When you type /**
Autocompletion of variables, methods
Formatting code ...
Shows unused fields/variables
Shows compiler errors

Sept 23, 2011 Sprenkle - CSCI209

33

Why can Eclipse provide this
functionality? (but Idle can’t?)

Eclipse Demo

Show Birthday class

» Override equals and toString methods
Create a new class

» Generate Main method, Comments

Create a String object, see methods used

Demonstrate refactoring

» Rename a field

» Extract a method (month name)

Run the Birthday Class (main)

» Command line arguments

Sept 23, 2011 Sprenkle - CSCI209 34

Your Eclipse Practice

Start up Eclipse
Create a new Java project: Assign5
Create a new Java class: Test
» Checkbox: Main method, comments
> Add an instance field: private int myVar;
> Use Source menu to generate a constructor
> Use Source menu to generate toString

Sept 23, 2011 Sprenkle - CSCI209

35

Installing at Home

Go to www.eclipse.org
Select “Downloads”

Then “Eclipse IDE for Java EE Developers”

» For developing web applications and other
enterprise applications

Sept 23, 2011 Sprenkle - CSCI209 36

Assignment 5

Using Eclipse

Creating an online library
5 classes of objects
Driver program

Could be tedious without IDE

Due before Wednesday’s class
Yes, two class periods away!
But start early

Sept 23, 2011 Sprenkle - CSCI209 37

