Objectives

GUIs in Java
Layout Managers
Event Handling

Nov 5, 2008 Sprenkle - CS209

GUI Review
What are the two main packages for GUI
development in Java?

Why is GUI development looking a little
difficult?

Nov 5, 2008 Sprenkle - CS209

Assignment 11 Questions

Nov 5, 2008

Sprenkle - CS209 2

Review: Swing & AWT

Swing does not completely replace AWT

Using the Swing graphics programming
model

Improves performance

Allows more efficient development of GUls
We will write graphics code that uses Swing
We may return to AWT later

what AWT offers that Swing does not

Nov 5, 2008

Sprenkle - CS209 4

Review: Example Frame

public class Game extends JFrame implements
KeyListener {

public static void main(String[] args) {
Game session = new Game();
session.initQ);

public void initQ) {
// Top-left corner is (0,0)
// width/height: XBOUND, YBOUND
setBounds(@, @, XBOUND, YBOUND);
// Shows the window
setVisible(true);

}

b

Review: Anatomy of an Application
GUI

GUI Internal structure
(Edrame 1 [0
JFrame
ContentPane
containers
JButton ContentPane
ILabel JButton

Nov 5, 2008 Sprenkle - CS209

Nov 5, 2008 Sprenkle - CS209

Review: Using a GUI Component

Create it

Configure it

Add children (if container)
Add to parent (if not JFrame)
Listen to it

order
important

Nov 5, 2008 Sprenkle - CS209

Using a GUI Component

Create it
JButton b = new JButton(“press
me”);
Configure it
b.setText(“press me”);
Add it
panel.add(b);
Listen to it
Events: Listeners

JFrame JFrane

Biome 1

Contains ContentPane

[Icx]

A Container objectwithin | contentPane

the JFrame holds
components you add, placing
them in the frame

The part of the frame that
holds Ul components

Nov 5, 2008 Sprenkle - CS209

Nov 5, 2008 Sprenkle - CS209 8
Building a GUI

Create (top down):
Frame | Listener |
Container SN ‘ 1
Components BRRERE JButton
Listeners ll ll

Add (bOttom Up): Con:]eent Container
Listeners into components JL

Components into panel

Panel into frame
JFrame

Nov 5, 2008 Sprenkle - CS209 10

Example Code

// create the components

JFrame f = new JFrame(“title”);
Container pane = f.getContentPane();
JButton b = new JButton(“press me”);

// add button to panel
pane.add(b);

// show the frame

f.setVisible(true); press me

Nov 5, 2008 Sprenkle - CS209

JPanel

Implements a panel
A panel has a surface on which you can draw
A panel is a Container
Can add components to a panel
Useful in designing layouts

Nov 5, 2008 Sprenkle - CS209 12

To Draw on a Panel

Define a new class that extends JPanel
Override paintComponent(Graphics g)
in derived class

Graphics object: collection of settings for
drawing images and text, e.g., colors and fonts

All drawing in Java goes through a Graphics

Drawing on a Panel

class MyPanel extends JPanel {
public void paintComponent(Graphics g) {

// code for drawing goes here

Nov 5, 2008 Sprenkle - CS209 14

object
Nov 5, 2008 Sprenkle - CS209 13
paintComponent

System calls paintComponent()
automatically whenever container needs to
be redrawn

Do not call this method yourself

It will be called when it needs to be
If need to force repainting the screen, call
repaint()

Calls paintComponent() for all needed

components with appropriate Graphics objects

Nov 5, 2008 Sprenkle - CS209 15

Drawing on a Panel: Graphics

Measurements on a Graphics object is in
pixels, as an offset from the top-left corner

(0,0) coordinates represent the top-left corner of
the container on which you are drawing

Nov 5, 2008 Sprenkle - CS209 16

Rendering Text

Displaying text is a special type of drawing,
called rendering text
To render text on a panel, call drawString()

class HelloWorldPanel extends JPanel {
public static final int MESSAGE_X = 75;
public static final int MESSAGE_Y = 100;

public void paintComponent(Graphics g) {
super.paintComponent(g);

g.drawString(“Hello World.”,
MESSAGE_X, MESSAGE_Y);

3

Nov 5, 2008 Sprenkle - CS209 Game . j ava 17

Drawing on a Panel

Notice we call superclass’s (JPanel)
paintComponent() method

JPanel has its own idea on how to draw/
paint the panel
Fills in the background color
To make sure background color gets filled,
call superclass’s paintComponent()
Every JPanel should color its background

Nov 5, 2008 Sprenkle - CS209 18

Changing the Text Font

Previous code drew text using default
system font

Can change the font

Need to determine which fonts are installed
on machine running the program

Nov 5, 2008 Sprenkle - CS209 19

Determining Available Fonts

GraphicsEnvironment
Represents the system’s graphical environment
Call getAvailableFontFamilyNames()
Returns an array of Strings

Each String contains the name of a font
installed on the system

Nov 5, 2008 Sprenkle - CS209 20

Determining the Available Fonts

To list all fonts installed on a particular system:

import java.awt.*;
public class ListFonts {

public static void main(String[] args) {
String[] fontNames = GraphicsEnvironment
.getLocalGraphicsEnvironment()
.getAvailableFontFamilyNames();
for (int i=0; i < fontNames.length; i++)
System.out.println(fontNames[i]);

3

Nov 5, 2008 Sprenkle - CS209 21

Determining the Available Fonts

Your program can look through fonts to see if
font(s) it wants is available on system
Five fonts are always available, mapped to
some font on machine

SansSerif

Serif

Monospaced

Dialog

Dialoglnput

Nov 5, 2008 Sprenkle - CS209 22

Creating a Font Object

Font object represents font on the system
Font constructor takes 3 arguments:
a String with the font name

a constant (defined in the Font class) that
describes the font style (plain, bold, italic, or
bold italic)

an integer for the point size

Nov 5, 2008 Sprenkle - CS209 23

Creating a Font Object

Font sansboldl4 = new Font(“SansSerif”, Font.BOLD, 14);
Font helvil2 = new Font(“Helvetica”, Font.ITALIC, 12);

You can change the font that the Graphics
object uses by calling setFont()

For example...

Font sansboldl4 = new Font(“SansSerif”, Font.BOLD, 14);
g.setFont(sansbold14);
g.drawString(“Hello there in SansSerif.”, 75, 100);

Nov 5, 2008 Sprenkle - CS209 24

More GUI components

Label
Basically, just a string
Buttons
Like a label but generates events
Checkbox
Buttons with state about if checked
CheckboxGroup
Radio buttons - only one can be selected at a
time

Nov 5, 2008 Sprenkle - CS209

25

More GUI Components

Choice

Drop-down list
FileDialog

Opening and saving files
List

Scrollable

Allows multiple selections
ScrollPane

scrollbars

Nov 5, 2008 Sprenkle - CS209 26

More GUI Components

TextField
Single line of text

TextArea
Multiple lines of text

Nov 5, 2008 Sprenkle - CS209

27

Menus

MenuBar

Thing across top of frame

Frame: setMenuBar(MenuBar mb);
Menu

The dropdown part

A sequence of MenuIltems

Menu is a subclass of MenuIltems, so can have
submenus

Nov 5, 2008 Sprenkle - CS209 28

Practice: Combining Components

Create a panel with three buttons on it

Nov 5, 2008 Sprenkle - CS209

29

Placement of Components

How does the panel know where to place a
button?

How does the panel know where to place
the next button?

How does the panel know where to place
any component that is added to it?

Nov 5, 2008 Sprenkle - CS209 30

Layout Managers

Java uses a concept of layout managers to
place components inside a container
LayoutManager automatically handles
placement of components
When a component is added to a container
(through add()), layout manager decides where
to place the component

Nov 5, 2008 Sprenkle - CS209 31

Border Layout Manager

Default layout manager of the content pane
for JFrame
Lets you choose where you want to place
each component

Center

North

South with respect to the container

East

West

Nov 5, 2008 Sprenkle - CS209 32

Border Layout Regions

North

West Center East

South

Edge components are laid out first
Center occupies remaining space

Nov 5, 2008 Sprenkle - CS209 33

Border Layout Rules

Grows all components to fill available space
Flow layout gives each component its preferred
sSize

If container is resized, edge components are

redrawn and center region size recomputed

To add a component to a container using a

border layout
Ex: JFrame’s content pane

Container contentPane = getContentPane();
contentPane.add(yellowButton, BorderLayout.SOUTH);

Nov 5, 2008 Sprenkle - CS209 34

Adding Components Using a Border
Layout

Container contentPane = getContentPane();
contentPane.add(yellowButton, BorderLayout.SOUTH);

If no region of the layout is specified
Assumes center region

Since border layout grows the component to

fit specified region
What happens if we add multiple components,
e.g., three buttons, without specifying a region?

Nov 5, 2008 Sprenkle - CS209 35

A Border Layout Limitation

Blue

Last button added grows to completely fill center region
First two buttons were discarded/overwritten by each
subsequently added component

Nov 5, 2008 Sprenkle - CS209 36

Changing Layout Managers

Any container can use any layout manager

Use setLayout() to change layout
manager before add components

// sets layout to a new flow layout manager that

// aligns row components to the left and uses a 20 pixel

// horizontal separation and 20 pixel vertical separation
setLayout(new FlowLayout(FlowLayout.LEFT, 20, 20));

// sets layout to a new border layout manager that

// uses a 45 pixel horizontal separation between components

// (regions) and a 20 pixel vertical separation
setLayout(new BorderLayout(45, 20));

Nov 5, 2008 Sprenkle - CS209 37

The Flow Layout Manager

Default layout manager for a panel

(not JFrame)

What | changed our JFrame to use
Lines components up horizontally until no
more room in container

Then starts a new row of components
If user resizes component, layout manager
automatically reflows components

Nov 5, 2008 Sprenkle - CS209 38

The Flow Layout Manager

You can choose how to arrange components
in each row
Default: center each row
Other options: left or right align
Change alignment using setLayout()
‘setLayout(new FlowLayout(FlowLayout.LEFT));‘
Causes panel to use a flow layout manager, with
row components aligned to the left
Another constructor has hgap and vgap for
gaps to put around components

Nov 5, 2008 Sprenkle - CS209 39

Using Panels w/ Border Layout

Panels act as (smaller) containers for Ul
elements
Can be arranged inside a larger panel by a
layout manager
Use additional panels to address Border
Layout problem

Create a panel

Add some buttons to it

Add that panel to the south region of content
pane

Nov 5, 2008 Sprenkle - CS209 40

Combinations

EFrame 1 HEB
JButton JButton

JTextArea

Nov 5, 2008 Sprenkle - CS209 41

Combinations

JButton JButton

(Errame 1 [-Io[x]
JFrame
N ——— JPanel: FlowLayout
JPanel: BorderLayout
w
Co—
T~ JTextArea
Nov 5, 200: r\anl(\ - CS209 42

Using Additional Panels

Get fairly accurate and precise placement of
components
Use nested panels with

Border layouts - for content panes and enclosing
panels

Flow layouts - for panels containing the buttons
and other Ul components

FlexibleLayout. java

Nov 5, 2008 Sprenkle - CS209 43

Grid Layout Manager

Divides the container into columns and rows
of equal size, which collectively occupy the
entire container region

Rows and columns are aligned like a
spreadsheet

When the container is resized, the “cells” grow
and/or shrink

Cells always maintain identical sizes

Nov 5, 2008 Sprenkle - CS209 44

Grid Layout Manager Construction

Number of rows and columns to be used in
the layout

‘panel.setLayout(new GridLayout(5, 4)); // 5 rows, 4 cols
As with border and flow layout managers,

you can specify a horizontal and vertical
separation between rows and columns:

panel.setLayout(new GridLayout(5, 4, 20, 20));
// 5 rows, 4 cols, 20 pixels between rows & between cols

Nov 5, 2008 Sprenkle - CS209 45

Adding Components to a Grid Layout

Components are added to a grid layout
sequentially

First add() adds the component to the 1st
row and 1st column

Second add() adds the component to the 1st
row, 2" column.

And so forth until 1st row is filled
Then 2" row begins with the 15t column
Continues until the entire container is filled

Nov 5, 2008 Sprenkle - CS209 46

Grid Layout Rules

When a component is added to a cell, it is
resized to take up entire cell
Quite restrictive but can be useful for some
applications
Example: Create a row of buttons of
identical size
Make a panel that has a grid layout with one
row
Add a button to each cell

Set horiz/vert separation, so buttons are not
touching

Nov 5, 2008 Sprenkle - CS209 47

Layout Manager Heuristics

null FlowLayout GridLayout
none, .
programmer Left to right,
Top to bottom
sets x,y,w,h

BorderLayout CardLayout GridBagLayout

c © One at a time JButton

S
Nov 5, 2008 Sprenkle - CS209 48

HANDLING USER
INTERACTIONS

Nov 5, 2008 Sprenkle - CS209 49

Event-Driven Programming

Flow of program is determined by user
actions (e.g., mouse clicks, key presses),
sensor outputs, or messages from other
applications

Application architecture:

while (true) {
event = waitForEvent(Q);
handleEvent(event);

Nov 5, 2008 Sprenkle - CS209 50

Event Basics

An event is generated from an event source
and is transmitted to an event listener
Event sources allow event listeners to
register with them
Means: registered listener requests event source
sends its event to listener when event occurs
All events are objects of event classes, which
derive from java.util.EventObject

Nov 5, 2008 Sprenkle - CS209 51

Java / AWT Event Handling

Listener object: implements a listener
interface
Event source: can register listener objects
and send them event objects
Event source sends out event objects to all
registered listeners when that event occurs
Listener objects use the event object to
determine their reaction to the event

Nov 5, 2008 Sprenkle - CS209 52

Java / AWT Event Handling

Register a listener with an event source:

eventSourceObject.addEventListener(
eventlListenerObject);

Example:

ActionListener listenerl = . . .;
JButton buttonl = new JButton(“Click Me!”);
buttonl.addActionListener(listenerl);

Whenever an “action event” occurs on button1,
listener1 is notified

For buttons, an action event is a button click

Nov 5, 2008 Sprenkle - CS209 53

Listener Objects

A listener object must be an instance of a
class that implements the appropriate
interface

For buttons, that's ActionListener

Listener class must implement
actionPerformed(ActionEvent
event)

Nov 5, 2008 Sprenkle - CS209 54

Listener Objects and Event Handling

When a user clicks a button, JButton
object generates an ActionEvent object
Which makes JButton a what?
JButton calls listener object’s
actionPerformed() method, passing
generated event object
A single event source can have multiple
listeners listening for its events
Source calls actionPerformed() on each of its
listeners

Nov 5, 2008 Sprenkle - CS209 55

An Example of Event Handling

Suppose we want to make a panel that has
three buttons on it
Each button has a color associated with it
When user clicks a button, background color of
panel changes to the corresponding color
We need two things:
A panel with three buttons on it

Three listener objects, each registered to listen
for events on one of the buttons

Nov 5, 2008 Sprenkle - CS209 56

Event Handling Example

Make some buttons and add them to panel

public class ColoredBackground extends JFrame {
public ColoredBackground() {

JButton red = new JButton("Red");
red.setForeground(Color.red);

JButton yellow = new JButton("Yellow");
yellow.setBackground(Color.yellow);
JButton blue = new JButton("Blue");
blue.setForeground(Color.blue);
cp.add(red);

cp.add(yellow);

cp.add(blue);

Nov 5, 2008 Sprenkle - CS209 57

Listener Objects

Now that we have buttons (event sources),
we need listeners
An action listener can be any class that
implements the ActionListener interface
Make a new class that implements the
interface
actionPerformed method should set the
background color of panel

Nov 5, 2008 Sprenkle - CS209 58

Our Listener Class: ColorAction

class ColorAction implements ActionListener {
public ColorAction(Color c)
{ backgroundColor = c; }
public void actionPerformed(ActionEvent evtl)
// set panel background color here

} \ How can we do this?

private Color backgroundColor;

Nov 5, 2008 Sprenkle - CS209 59

Registering Our Listener Class

Create ActionListener objects and register
them with the buttons...

ColorAction yellowAction = new ColorAction(Color.yellow);
ColorAction blueAction = new ColorAction(Color.blue);
ColorAction redAction = new ColorAction(Color.red);

yellow.addActionListener(yellowAction);
blue.addActionListener(blueAction);
red.addActionListener(redAction);

L/These are JButtons

Nov 5, 2008 Sprenkle - CS209 60

Registering Our Listener Class

When a user clicks the button with the label
“Yellow”, the yellow JButton object generates
an ActionEvent

Passes this event object to the yellowAction’s
actionPerformed() method

Method can then set frame’s background color

Any problems?

Nov 5, 2008 Sprenkle - CS209 61

The Listener Class & the Frame

ColorAction objects don't have access to
frame
How can they change the background color?

Possible solutions?

Nov 5, 2008 Sprenkle - CS209 62

The Listener Class & the Frame

ColorAction objects don't have access to
frame

How can they change the background color?
Two possible solutions:

Add a frame instance field to ColorAction

class and set it in constructor

ColorAction object knows which frame it is
associated with and can call appropriate method
to change its background color

Make ColorAction an inner class of
ButtonPanel1

Nov 5, 2008 Sprenkle - CS209 63

Listener as an Inner Class

class ColoredBackground extends JFrame {
// ColoredBackground code ..

private class ColorAction implements ActionListener {

;;ut;l{c void actionPerformed(ActionEvent evt) {
setBackground(backgroundColor);
repaint();

private Color backgroundColor; Where are these

3 coming from?

Nov 5, 2008 Sprenkle - CS209 64

The actionPerformed() Method

public void actionPerformed(ActionEvent evt) {
setBackground(backgroundColor);
repaint();

ColorAction does not have setBackground()
or repaint() methods
Since ColorAction is an inner class of
ColoredBackground, it can directly access that
class’ instance fields and methods
Inner class calls the outer class’s method

Parameter: its own private inner data (backgroundColor)
Then it calls the outer class’s repaint() method

Redraw the frame
Nov 5, 2008 Sprenkle - CS209 65

Event Listeners as Inner Classes

A common and beneficial practice

Event listener objects typically need to do
something to other objects when their
corresponding event occurs
It is often possible to place the listener class
inside the class whose state the listener
should modify
It's also good OOP design

Not violating encapsulation rules ...

Makes code easier

Nov 5, 2008 Sprenkle - CS209 66

A Different Listener Approach

Any object of a class that implements
ActionListener can listen for action
events from a source
Could make ColoredBackground listen for its
own buttons’ events
Implement interface and do correct registering
with the buttons

Nov 5, 2008 Sprenkle - CS209 67

A Different Listener Approach

class ColoredBackground2 extends JFrame
implements ActionListener {

public ColoredBackground2() {
yeiléw.addActionListener(this);
blue.addActionListener(this);

red.addActionListener(this);
}

public void actionPerformed(ActionEvent evt) {
// set background color

}

3

Nov 5, 2008 Sprenkle - CS209 68

A Different Listener Approach

ColoredBackground ’s
actionPerformed() runs whenever any of
the buttons is clicked

How do we find out which button was pressed?

public void actionPerformed(ActionEvent evt) {
// gets the source that generates this event
Object source = evt.getSource();

if (source == yellow) . . .
else if (source == blue) . . .
else if (source == red) . . .

b

Why ==, not equals()?
69

Nov 5, 2008 Sprenkle - CS209

Which approach is better?

Nov 5, 2008 Sprenkle - CS209 70

Which approach is better?

Inner class approach makes sense from an
OOP design point
Each event source gets its own listener, which
can directly modify panel as it needs to do
Having panel itself listen is much more
straightforward
Since panel needs to change, have it listen!
But, handling method must determine event's
source and switch its behavior
Consider: How easy to add additional event
sources for each case?

Nov 5, 2008 Sprenkle - CS209 4l

Which approach is better?

Neither way is “better”
If container has multiple Ul components that
generate events, the container listening for
and handling them all gets really confusing
and challenging
Inner classes make sense

Somewhat confusing at first

Great benefits

We will tend to use inner class listeners

Nov 5, 2008 Sprenkle - CS209 72

Simplification of our Event Handlers

For each button, we do four things:
Construct the button with a label string
Add the button to the panel

Construct an action listener with the appropriate
color

Register that listener with the button

What does this mean we should do?

Nov 5, 2008 Sprenkle - CS209 73

Simplification of our Event Handlers

void makeButton(String label, Color backgroundColor) {
JButton button = new JButton(label);
add(button);
ColorAction action = new ColorAction(backgroundColor);
button.addActionListener(action);

b

Makes the ColoredBackground
constructor much simpler...

public ColoredBackground() {
makeButton(“Yellow”,Color.yellow);
makeButton(“Blue”,Color.blue);
makeButton(“Red”,Color.red);

}

Nov 5, 2008 Sprenkle - CS209 74

Simplifying Further
We only use the ColorAction class in
makeButton method

How can we further simplify the code?

Nov 5, 2008 Sprenkle - CS209 75

Simplifying Further

Make the ColorAction class an
anonymous inner class
Only use this class at one point
Define it on the fly

Nov 5, 2008 Sprenkle - CS209 76

An Anonymous Class Listener

void makeButton(String label, final Color bgColor) {
JButton button = new JButton(label);
add(button);
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt)

setBackground(bgColor);
repaint();

}
DN

Nov 5, 2008 Sprenkle - CS209 77

