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Objectives 

•  SLogo Design 
•  Discussion of Preparation Analyses 
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Development Issues/Discussion 

•  How can you identify issues in the 
screensavers project? 

•  Design principles still hold 
Ø Use parent classes 
Ø Don’t duplicate code 

•  Ex: Location of random number generation 
Ø Readability: naming, no magic numbers, 

organization 
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Review 

•  How is a programming language processed? 
Ø What are the different phases? 

•  Start up Eclipse 
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Review: Interpreting User’s Input 
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Review: Practice Adding Instructions 
1. Create a token for instruction 

Ø Likely a subclass of token.ReservedToken	
Ø Same prefix as new instruction, e.g., IfToken.java	

2. Create a parser for the instruction with same 
prefix as instruction, e.g., IfParser.java	
Ø Parsing class (presumably implementing Parser) 

returns an instance of parsed Instruction 
3. Create an instruction with prefix name, e.g., 

If.java	
4. Add instruction name to file 

instructions.prop, e.g., add a single line to 
file containing string If  
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Consult examples	



PLANNING THE PROJECT 
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Definition of Use Case? 

•  Description of steps or actions between a 
user and a software system towards some 
goal 
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What Steps Need To Be Completed? 

•  By the Team  

•  Process to figure out what needs to be 
completed 
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What Steps Need To Be Completed? 
•  Model: Turtle 

Ø API 
Ø State 

•  GUI 
Ø Canvas – displays turtle 
Ø Command interface 
Ø  Listeners 
Ø Multiple workspaces 
Ø Turtle info displayed 

(toggable) 
Ø More options/buttons 

(optional) 
•  TESTING! 

•  Parsing SLogo language 
Ø Handle instructions 
Ø Handle errors 

appropriately 

•  Evaluating expressions 
Ø Manipulate turtle 

appropriately 

•  File handling 
Ø Read file of SLogo files 
Ø Save SLogo commands 
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Dependencies? 
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Dependencies 

•  Interpreter classes (tokens, analyzer, 
expression) are very dependent on each 
other 

•  Need to hook GUI to Interpreter 
•  Need to hook Turtle to GUI and Interpreter 

•  Can test without other pieces but easier and 
more satisfying to see results displayed 
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Effect of Extensions 

•  Extensions could affect your code design 
Ø Where could change à abstraction 

•  Decision? 
Ø May change your minds after start working on 

the code 
Ø Top vote getters 
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Plan 

•  Tasks/Steps 
Ø Testing 
Ø Think about iterative development 

•  Monday deadline: FD 50 working at least 

•  Division of tasks 
Ø # of people per part 

•  Deadlines 
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Goals 

•  Implement one instruction completely 
Ø Involves a lot of different pieces 

•  Don’t go too far in breadth, more depth 
Ø See design issues sooner 

•  “We need method/functionality X in class Y” 
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Secondary Goals 

•  You’re going to figure out that your design 
isn’t perfect--maybe not even good! 
Ø Fix smaller and/or more critical things 

•  Refactoring! 
Ø Note larger things 

•  analysis/post-mortem due at end of finals week 
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Good judgment comes from experience.  
How do you get experience?  

Bad judgment works every time. 

SLogo Timeline 

•  Monday, Dec 5: demo preliminary 
functionality of application (group) 

•  ??: final implementation due (group) 
Ø Latest Fri, Dec 16 

•  Fri, Dec 16: “Post-mortem” (individual) 
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Exam Review 

•  Discuss the design principles applied and 
tradeoffs in how Sun designed the Java IO 
classes.   

•  Specifically, Java provides classes that 
handle reading from/writing to sources (e.g., 
files, Strings, network), classes that take as 
input other streams and filter those streams, 
and convenience classes that combine 
commonly used source and filter streams 
together.  
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Exam Feedback 

•  Good: 
Ø Design for change 
Ø Comparing Java and Python 

•  Not so good: 
Ø JUnit properties 
Ø Change à Abstraction 
Ø Code smells à poor design 
Ø When to stop testing 
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Grade Score 
A 85.5-95 
B 76-85.5 
C 66.5-76 
D 57-66.5 

82% median, 
 average 


