
11/16/11

1

Objectives

• Wrap up Dependency Inversion Principle
•  Design Patterns: Observer, MVC
•  Analysis and Design

Nov 16, 2011 Sprenkle - CSCI209 1

Testing Project Notes
•  Overall good
•  Common specification issues

Ø Park when refuel; can’t park with go; invalid
gears

•  Common test issues
Ø Incorrect expected results; incorrect states to call

methods; missing @Test; missing tests for some
methods

•  JUnit discussion
Ø What does JUnit do for you? Make easier for

you?
Nov 16, 2011 Sprenkle - CSCI209 2

Review

• What is a design pattern?
• What design patterns did we discuss?

Ø What design principle(s) does it follow?
• Why do we prefer composition over

inheritance?
• What design pattern is used in the screen

savers code?
•  Any underlying commonalities?

Nov 16, 2011 Sprenkle - CSCI209 3

One Option for Screen Saver
Dependencies

Nov 16, 2011 Sprenkle - CSCI209 4

Bouncer	 Walker	

GUI	

Racer	

Violates Dependency Inversion Principle:	

High-level component is dependent on concrete classes.	

If implementations change, GUI may have to change	

Our Screen Saver Dependencies

Nov 16, 2011 Sprenkle - CSCI209 5

Mover	 Canvas	 Factory	

Bouncer	 BouncerFactory	

ButtonPanel	

Our Screen Saver Dependencies

Nov 16, 2011 Sprenkle - CSCI209 6

Mover	 Canvas	 Factory	

Bouncer	 BouncerFactory	

ButtonPanel	

Note: dependencies
are on abstractions

and classes unlikely to
change 	

11/16/11

2

Guidelines to Follow
Dependency Inversion Principle
•  No variable should hold a reference to a

concrete class
Ø Using new à holding reference to concrete class
Ø Use factory instead

•  No class should derive from a concrete class
Ø Why? Depends on a concrete class
Ø Derive from an interface or abstract class instead

•  No method should override an implemented
method of its base class
Ø Base class wasn’t an abstraction
Ø Those methods are meant to be shared by

subclasses

Nov 16, 2011 Sprenkle - CSCI209 7

What’s an issue with following ���
all of these guidelines? 	

Dependency Inversion Principle

Nov 16, 2011 Sprenkle - CSCI209 8

Depend upon
abstractions	

Design Pattern: Observer
•  Defines a 1-to-many dependency between

objects
• When one object changes state, all of its

dependents are notified and updated
automatically

Nov 16, 2011 Sprenkle - CSCI209 9

Subject

Object that
holds state	

Dependent Objects	

Automatic update/
notification	

 Object

Object

Object

Ex: Publisher	

 Ex: Subscribers	

Observer Pattern

Nov 16, 2011 Sprenkle - CSCI209 10

Subject	
registerObserver()	
removeObserver()	
notifyObservers()	

Observer	
update()	

ConcreteSubject	
registerObserver()	
removeObserver()	
notifyObservers()	
getState()	
setState()	

ConcreteObserver	
update()	
//observer-specific	
//methods	

Have we seen this pattern?	

implementation	

implementation	

association	

association	

Design Principle: Loose Coupling

•  A principle behind Observer pattern

•  Loosely coupled objects can interact but
have very little knowledge of each other
Ø Minimize dependency between objects
Ø More flexible systems
Ø Handle change

Nov 16, 2011 Sprenkle - CSCI209 11

Goal: loosely coupled designs
between objects that interact	

Model - Viewer - Controller (MVC)

•  A common design pattern for GUIs
•  Separate

Ø Model: application data
Ø View: graphical representation
Ø Controller: input processing

Nov 16, 2011 Sprenkle - CSCI209 12

Model Controller View
Notifies	

Modifies	

11/16/11

3

Model-Viewer-Controller

•  Can have multiple viewers and controllers
•  Goal: modify one component without

affecting others

Nov 16, 2011 Sprenkle - CSCI209 13

Model Controller View
Notifies	

Modifies	

Model	 View	

Controller	

Direct associations

Model

•  Code that carries out some task
•  Nothing about how view presented to user
•  Purely functional
•  Must be able to register views and notify

views of changes

Nov 16, 2011 Sprenkle - CSCI209 14

Model

Multiple Views

•  Provides GUI interface
components of model
Ø Look & Feel of the application

•  User manipulates view
Ø Informs controller of change

•  Example of multiple views:
spreadsheet data
Ø Rows/columns in spreadsheet
Ø Pie chart, bar chart, …

Nov 16, 2011 Sprenkle - CSCI209 15

View
View

View

Controller(s)

•  Takes user input and figures out what it
means to the model
Ø Makes decisions about behavior of model based

on UI
•  Update model as user interacts with view

Ø Calls model’s mutator methods
•  Views are associated with controllers

Nov 16, 2011 Sprenkle - CSCI209 16

Controller Controller Controller

Example: Music Player

Nov 16, 2011 Sprenkle - CSCI209 17

View Controller

Model

User •  Use interface
•  Actions go to controller

Controller
manipulates

model
class Player	

play()	
rip()	

export()	

Display is updated

“Play new song”	

Controller asks Player model to
begin playing song	

Model tells
view that state
has changed

•  See the song display
update	

• Hear new song playing	

Contains state, data,
application logic	

MVC: Combination of Design Patterns

Nov 16, 2011 Sprenkle - CSCI209 18

11/16/11

4

MVC: Combination of Design Patterns
•  Observer

Ø Views, Controller notified of Model’s state changes
•  Strategy

Ø View can plug in different controllers
Ø Different views of the same model

•  Composite
Ø View is a composite of GUI components

•  Top-level component learns about model update,
updates components

•  A container computes its preferred size by combining
all the preferred sizes of its components

Nov 16, 2011 Sprenkle - CSCI209 19

Code Analysis

•  Consider GUIs we’ve seen
Ø Which use the MVC pattern?

•  Identify M, V, and C in applicable GUIs

Nov 16, 2011 Sprenkle - CSCI209 20

ANALYSIS & DESIGN:
FORMALIZED

Nov 16, 2011 Sprenkle - CSCI209 21

Design Heuristics
•  Model real world whenever possible
•  Avoid all-powerful (omnipotent) classes
•  Distribute system intelligence among classes

evenly
Ø Top-level classes should share work uniformly
Ø More easily understood system
Ø More easily communicated design

•  Minimize # of messages between class and
helper
Ø Reduce coupling btw class and helper

Nov 16, 2011 Sprenkle - CSCI209 22

Analysis Phase
•  Create an abstract model in client’s

vocabulary
•  Strategy:

1.  Identify classes that model (shape) system as
set of abstractions

2.  Determine each class’s purpose, or main
responsibility
•  member functions
•  data members

3.  Determine helper classes for each
•  Help complete responsibilities

Nov 16, 2011 Sprenkle - CSCI209 23

“Dohickey”	

 Analysis Phase Discussion

•  Expect to iterate
Ø Won’t find all classes at first

•  Especially helpers
Ø Won’t know all responsibilities

•  Uncertainty in problem statement
Ø May be concerns that need to be settled
Ø Try to understand requested software system at

level of those requesting software
•  Rarely one true correct best design

Nov 16, 2011 Sprenkle - CSCI209 24

11/16/11

5

Identification of Classes

•  Potentially model the system
•  Usually nouns from problem description or

from domain knowledge
•  Model real world whenever possible

Ø More understandable software
Ø Helps during maintenance when someone

unfamiliar with system must update/fix code

Nov 16, 2011 Sprenkle - CSCI209 25

Identifying Responsibilities

•  Responsibilities convey purpose of class, its
role in system

•  Questions to Ask:
Ø What are the other responsibilities needed to

model the solution?
•  Which class should take on this particular

responsibility?
Ø What classes help another class fulfill its

responsibility?

Nov 16, 2011 Sprenkle - CSCI209 26

Have You Modeled Everything?
•  Strategy: Role playing
•  Act as different classes: can you do

everything you want in various scenarios?
Ø Fill in missing classes, responsibilities
Ø Methods: parameters, what returned
Ø Restructure as necessary

•  No code yet so not actually refactoring
•  Example use cases/scenarios:

Ø User borrows a video and returns it two days late
Ø User tries to borrow book that is already checked

out
Nov 16, 2011 Sprenkle - CSCI209 27

Discussion

• What else can use cases be used for?

Nov 16, 2011 Sprenkle - CSCI209 28

Discussion

• What else can use cases be used for?
Ø Test Cases

Nov 16, 2011 Sprenkle - CSCI209 29

TEAM FINAL PROJECT

Nov 16, 2011 Sprenkle - CSCI209 30

11/16/11

6

Project Deliverables Timeline

Deliverable Who Weight Due Date
Preparation Individual 8% Mon, 11/28
Preliminary

Implementation Team 37% Mon, 12/5

Final
Implementation Team 40% You decide

àlatest 12/16
Analysis Individual 15% 12/16

Nov 16, 2011 Sprenkle - CSCI209 31

Teams

•  Sophomores: Suraj, Garrett, Richard, Anton
•  Juniors: Amy, Hank, Phil, Shannon
•  Seniors: Andrew, Anna, Mike

Nov 16, 2011 Sprenkle - CSCI209 32

SLogo Project Overview

•  Goal: Create an IDE for simplified version of
Logo

•  Logo: programming language designed to
teach children to program
Ø Low floor, high ceiling

Nov 16, 2011 Sprenkle - CSCI209 33

SLogo Functionality Overview

•  User enters SLogo commands
Ø Commands defined by specification

•  Interpreted and batch modes for entering
commands
Ø User can save files of commands

•  Have turtle execute the commands
Ø Or descriptive error messages

•  Many possible extensions

Nov 16, 2011 Sprenkle - CSCI209 34

High-Level Design Brainstorm

• What are the pieces that you’ll need to
implement for this project?

Nov 16, 2011 Sprenkle - CSCI209 35

Programming Language Syntax

• What does an identifier look like in Java?
• What does an assignment statement look

like in Java?
• What can be on the left hand side?
• What can be on the right hand side?

• What does a multiplication look like?
•  How do we evaluate arithmetic expressions?

Nov 16, 2011 Sprenkle - CSCI209 36

11/16/11

7

Programming Language Design

•  Must be unambiguous
Ø Programming Language defines a syntax and

semantics
•  Interpreting programming languages

Ø Parse program into tokens
•  Example: x = 4*3; à

Ø Verify that tokens are in a valid form
Ø Generate executable code

Nov 16, 2011 Sprenkle - CSCI209 37

<id> <assignment> <num> <mult> <num> <endofstmt>	

Interpreting User’s Input

Nov 16, 2011 Sprenkle - CSCI209 38

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree	

Interpreter

User’s
Input

Token Token Tokens

OR	

OR	

Evaluation of
expression	

Draw on
canvas	

ELAN: Educational programming LANguage	

Interpreting User’s Input

Nov 16, 2011 Sprenkle - CSCI209 39

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree	

Interpreter

User’s
Input

Token Token Tokens

OR	

OR	

Evaluation of
expression	

Draw on
canvas	

FORWARD SUM 10 10	

What We Need to Do/Represent

•  Lexical Analysis

•  Semantic Analysis

•  Evaluation

Nov 16, 2011 Sprenkle - CSCI209 40

What We Need to Do/Represent
•  Lexical Analysis

Ø Recognize/create tokens
Ø Report errors in creating tokens

•  Semantic Analysis
Ø Convert infix tokens into postfix

•  Report errors
Ø Parse tokens into expressions

•  Report errors
•  Evaluation

Ø Evaluate expressions with respect to turtle/
model

Nov 16, 2011 Sprenkle - CSCI209 41

TODO

•  Assignment 11 due Friday
•  Project Analysis due Monday after

Thanksgiving

Nov 16, 2011 Sprenkle - CSCI209 42

