
10/17/11

1

Objectives

•  Java Wrap up
Ø Standard Error
Ø CLASSPATH
Ø Jar Files

•  Language Comparison
•  Software Development

Oct 17, 2011 Sprenkle - CSCI209 1

Discussion

• Who is Dennis Ritchie?

Oct 17, 2011 Sprenkle - CSCI209 2

Dennis Ritchie
•  Creator of C

programming
language

•  Built Unix using C
with Ken Thompson

Oct 17, 2011 Sprenkle - CSCI209 3

Ritchie’s running joke was that
C had “the power of assembly
language and the convenience
of … assembly language.” 	

Dennis Ritchie (standing) and Ken
Thompson at a PDP-11 in 1972. (Photo:
Courtesy of Bell Labs)	

"UNIX is very simple, it just
needs a genius to understand
its simplicity."	

Discussion: Site Spoofing

Oct 17, 2011 Sprenkle - CSCI209 4

•  CSCI325 Project, Spring 2010

CSCI 325 Spring 2010 Project	

Review

•  If I only have a certain number of possible
valid object values, what should I use?

• Why do we need Comparators?
•  How does Java resolve methods that are

Ø Overridden
Ø Overloaded

Oct 17, 2011 Sprenkle - CSCI209 5

STANDARD ERROR

Oct 17, 2011 Sprenkle - CSCI209 6

10/17/11

2

Standard Streams

•  Preconnected streams
Ø Standard Out: stdout
Ø Standard In: stdin
Ø Standard Error: stderr

•  For error messages and diagnostics
•  In Java: System.err	

•  Benefits of two output streams
Ø Redirect to different places

•  Example: separate log files for info and for errors
•  Look at some web logs

Oct 17, 2011 Sprenkle - CSCI209 7

Redirecting Output

•  Recall earlier this semester

Ø Redirected stdout to score.out	
Ø stderr would still go to terminal

•  To redirect stderr to file as well

Oct 17, 2011 Sprenkle - CSCI209 8

> java OlympicScore > score.out	

> java OlympicScore >& score.out	

CLASSPATH

Oct 17, 2011 Sprenkle - CSCI209 9

Classpath

•  Tells the compiler or JVM where to look for
user-defined classes and packages
Ø Often when using third-party libraries

•  Similar to PYTHONPATH

•  Typically know it needs to be set when there
are class not found error messages

Oct 17, 2011 Sprenkle - CSCI209 10

Setting the Classpath
•  Can specify classpath in command line

•  Can specify the classpath environment variable
Ø Edit your .bash_profile OR
Ø Set in terminal

•  In Eclipse, you can “Configure Build Path” for a
project

Oct 17, 2011 Sprenkle - CSCI209 11

javac -cp path/to/myjavaclasses MyClass.java	
java –cp path/to/myjavaclasses MyClass	

CLASSPATH=$CLASSPATH:path/to/myjavaclasses	
echo $CLASSPATH	 Current value of CLASSPATH	 JAR FILES

Oct 12, 2011 Sprenkle - CSCI209 12

10/17/11

3

Jar (Java Archive) Files

•  Archives of Java class files

•  Package code into a neat bundle to
distribute
Ø Easier, faster to download
Ø Easier for others to use

•  Optional: include source code

Oct 12, 2011 Sprenkle - CSCI209 13

Using Jars

•  Add jar files to CLASSPATH to use classes in
jar file

•  Add a jar file to the current classpath
environment variable ($CLASSPATH)

•  Or add to classpath as command-line option

•  In Eclipse, you can “Configure Build Path”

Oct 12, 2011 Sprenkle - CSCI209 14

CLASSPATH=$CLASSPATH:myapplication.jar	
echo $CLASSPATH	 Current value of CLASSPATH	

java -cp mail.jar:email.jar grading.Email …	

Jar/Tar Command

• jar command: Create, view, extract Jar
files

•  Common use:
Ø jar cfz archive.jar.gz arch_directory	
Ø jar xfz archive.jar.gz	

Oct 12, 2011 Sprenkle - CSCI209 15

Option/Operation Meaning
f	 The name of the archive file
c	 Create an archive file
x	 Extract the archive file
v	 Verbose
z	 Zip (compress)
t	 Table of contents (list contents)

Similar
to tar

Jar file: Metadata

•  Jar file includes a special metadata file with
the path META-INF/MANIFEST.MF	
Ø Describe how Jar file is used
Ø jar creates a default metadata file, if not

specified	

Oct 12, 2011 Sprenkle - CSCI209 16

Jar file: Metadata

•  Example metadata file that allows you to
execute the JAR with java

•  To create the jar file:
jar cmf myManifest myapplication.jar *.class	

•  Run Main-Class using java
java -jar myapplication.jar 	

Oct 12, 2011 Sprenkle - CSCI209 17

Specifying the metadata file	

Manifest-Version: 1.0	
Main-Class: MyApplication	
	

Note the newline	

Creating Jar Files in Eclipse

•  Export à Java à Jar
Ø Options to create a MANIFEST.MF file
Ø Options to include source files or only class files

•  Can submit assignments this way
Ø Must include source files

Oct 12, 2011 Sprenkle - CSCI209 18

10/17/11

4

LANGUAGE COMPARISON

Oct 17, 2011 Sprenkle - CSCI209 19

Language Comparison

Java Python

Oct 17, 2011 Sprenkle - CSCI209 20

Language Comparison

Java
•  Object-oriented
•  Statically typed
•  Compiled

Python
•  Object-oriented
•  Dynamically typed
•  Interpreted

Oct 17, 2011 Sprenkle - CSCI209 21

Pros and cons of using each?	

Python Interpreter
1.  Validates Python programming language

expression(s)
•  Enforces Python syntax rules
•  Reports syntax errors

2.  Executes expression(s)

Oct 17, 2011 Sprenkle - CSCI209 22

Interpreter
(python)

Python
expression

Output Executable
bytecode

Only if no
syntax errors	

Compiler	

(javac)	

Java Compiler

•  Lexical analysis, parsing, semantic analysis,
code generation, and code optimization

•  Code optimization: dead code eliminator,
inline expansion, constant propagation, …

Oct 17, 2011 Sprenkle - CSCI209 23

Java	

file	

Java	

class	

Source code	

 Executable code	

Compiling
•  Translates high-level programming language to

machine code or byte code
Ø  Java: .class à bytecode

•  Compiler optimization techniques
Ø Generate efficient bytecode/machine code
Ø Examples: get rid of unused local variables, transform

loops, inline method calls
Ø  In Java: static typing for additional gains

•  Can execute generated code multiple times
Ø Performance gain
Ø  Interpreted à have to re-verify the code each time

executed

Oct 17, 2011 Sprenkle - CSCI209 24

What can we do in Python that we can’t do in Java? 	

10/17/11

5

Summary:
 Compiled vs Interpreted Languages

Compiled
-  Spends a lot of time

analyzing and processing
the program

•  Resulting executable is
some form of machine-
specific binary code

•  Computer hardware
interprets (executes)
resulting code

ü Program execution is fast
Ø  Efficient machine/byte code

generation
Ø  Performance gains

Interpreted
ü Relatively little time spent

analyzing and processing
the program

•  Resulting code is some
sort of intermediate code

•  Another program
interprets resulting code

-  Program execution is
relatively slow

ü Faster development/
prototyping

Oct 17, 2011 Sprenkle - CSCI209 25

SOFTWARE LIFE CYCLE

Oct 17, 2011 Sprenkle - CSCI209 26

Traditional Software Engineering
Process: Waterfall Model

Oct 17, 2011 Sprenkle - CSCI209 27

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

Validate at each step	

Goal: A stage is 100%
complete before moving to
next step	

Feedback in Waterfall Model

Oct 17, 2011 Sprenkle - CSCI209 28

• Problems may be revealed
in later stages	

• What happens if problems
aren’t revealed until
Acceptance?	

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

Iterative Design

Oct 17, 2011 Sprenkle - CSCI209 29

Design

Evaluate Implement

Get feedback
from users/	

clients	

Spiral Model

•  Idea: smaller prototypes
to test/fix/throw away
Ø Finding problems early

costs less
•  In general…

Ø Break functionality into
smaller pieces

Ø  Implement most
depended-on or highest-
priority features first

Oct 17, 2011 Sprenkle - CSCI209 30

Design	

Implement	

Evaluate	

Prototypes	

Radial dimension: cost	

[Boehm 86]

10/17/11

6

Prototypes
•  Purpose/Dimensions

Ø Functionality
Ø  Interaction
Ø  Implementation

•  Fidelity:
Ø Low: omits details
Ø High: closer to finished project
Ø Multi-dimensional

•  Breadth: % of features covered
Ø Only enough features for certain tasks

•  Depth: degree of functionality
Ø Limited choices, canned responses, no error handling

Oct 17, 2011 Sprenkle - CSCI209 31

From Nielsen, ���
Usability Engineering	

Low Fidelity

•  Media: Paper
•  Examples:

storyboard,
sketches, flipbook,
flow diagram

Oct 17, 2011 Sprenkle - CSCI209 32

High Fidelity

•  Media: Flash, HTML (non-interactive),
PowerPoint, Video

•  Examples: Mockups, Wizard of Oz

Oct 17, 2011 Sprenkle - CSCI209 33

Virtual Peer for
Autistic Children

http://www.articulab.justinecassell.com/projects/samautism/index.html	

TODO

• Wed: Assignment 8 due

• Wed class: More testing!

Oct 17, 2011 Sprenkle - CSCI209 34

