10/21/11

Objectives

* Eclipse debugger

* Software testing issue: when have | tested
enough?

* Coverage criteria

Oct 21, 2011 Sprenkle - CSCI209 1

Review

* Describe the general testing process

* What is a set of test cases called?

* What is unit testing?

* What are the benefits of unit testing?

* What are the characteristics of good unit tests?
* What are the steps in a JUnit Test Case?

* True or false: When my application passes all of
the unit tests, my application is 100% bug free.

* Project 1 questions?

Oct 21,2011 Sprenkle - CSCI209 2

Eclipse Debugger

1. Set breakpoint
» Near and BEFORE point of failure

2. Run program in debug mode

3. Inspect variables

4. Step through program, inspecting variables
» Step into, over, and return

Oct 21, 2011 Sprenkle - CSCI209 3

Software Testing Issues

* How do we know if the calculator program is
correct?
» How do we know that we’ve exposed all the

faults?
> How confident are we in its correctness? @
* How do we know if we've tested enough?

» Our customers want this product soon but we
need product to be correct
¢ Harder to fix after it has been released

Oct 21,2011 Sprenkle - CSCI209 4

Software Testing Issues

* How do we know if the calculator program is
correct?

» How do we know that we've exposed all the
faults?

» How confident are we in its correctness?

* How do we know if we’ve tested enough?
» Time? It's been a couple hours/days/...
» Number of test cases executed? A lot!

» | asked my brother and he’s really smart and he
says that it's enough

Oct 21, 2011 Sprenkle - CSCI209 5

Testing Continuum

No testing Exhaustive
Testing
* Give to customer e Test every possible input
immediately » Costly, impractical
* Likely buggy! * Need to release application to
¢ Very little confidence in customers sometime!

program’s quality

Oct 21,2011 Sprenkle - CSCI209 6

Testing Continuum

No testing Statement- Exhaustive
Coverage Testing

* Need to execute all code

¢ Cover (i.e., execute) all statements in the
program

Oct 21, 2011 Sprenkle - CSCI209 7

10/21/11

Analogy: Map coverage

Statement Coverage

* Cover all statements in the program
Test Suite:
num=5

public String exampleMethod(int num) {
String string = null;

if (num < 10) {

string = ""

SN

+ condition;

// remove the leading & trailing whitespace
v return string.trimQ;

}

’ Is this method bug-free? ‘
Oct 21, 2011 Sprenkle - CSCI209 9

Program Flow

exampleMethod(int num)

public String exampleMethod(int num) {
String string = null;
if (num < 10) {

String string = null;

string = "" + condition;
return string.trimQ); if(num < 10)
true Implicit
. false Branch
string =
+ condition;
string.trim();
Oct 21, 2011 Sprenkle - CSCI209 10

What Went Wrong?

* Test suite had 100%
statement coverage but
missed a branch/edge

* Try covering all edges in
program’s flow

» Also covers all nodes true Implicit

false Branch
> Called Branch string = ase Eranc
Coverage + condition;

exampleMethod(int num)

String string = null;

if(num < 10)

string.trim();

Oct 21, 2011 Sprenkle - CSCI209 "

Branch Coverage

exampleMethod(int num)

* Cover all branches 1

In the program

Test Suite:

if(num < 10)
num=>5,
num=10 Implicit
_~ false Branch
string =
+ condition;
string.trim();
Oct 21, 2011 Sprenkle - CSCI209 12

Branch Coverage

exampleMethod(int num)

* Cover all branches 1

In the prograim

Test Suite:

10/21/11

Branch Coverage

* Cover all branches 1

In the program

Test Suite:

if(num < 10)
num=5,
num=10 true Implicit
. false Branch
string =
+ condition;
string.trim();
Oct 21, 2011 Sprenkle - CSCI209 13
Example 2

public String exampleMethod(int a) {
String str = “d”;
if Ca<7){
a *= 2;
str += “riv”;
} else {

str = “co” + str;

¥

ifCa>10) {
str += “ing”;

} else {

str += “es”;

return str.substring(6);
}

Oct 21, 2011 Sprenkle - CSCI209 15

if(num < 10)
num=5,
num=10 Implicit
-~ false Branch
string =
+ condition;
string.trim();
Oct 21, 2011 Sprenkle - CSCI209 14
exampleMethod(int a)
Example 2
1
public String exampleMethod(int a) { String str = *d";
String str = “d”; 2
1f(g<27>{ if(a<7)
a *= 2;
str o+= “riv”; 3 tru;/\zise
} else { i iy
str = “co” + str; a*—“2‘,) str = “co
1 str += “riv’; + str;
ifCa>10) { 2
str += “ing”; ifCa >10)
H

} else { truwe
str += “es”; 6

1 str += “ing”; str += “es”;
return str.substring(6);

} 8\/

return str.substring(6);
Oct 21, 2011 Sprenkle - CSCI209 16

Branch Coverage

2 ¥

Test Suite:

- true false
a=3, e B 4
- str="driv = “co”
a=30 r str c_o
a=6 + str;
5
true E gEalse
str="drives” _ str += “ing"; str += “es”:
return str.substring(6);
Oct 21, 2011 Sprenkle - CSCI209 7

exampleMethod(int a)

String str = “d”;

Branch Coverage

Test Suite:

a=3,
- str="cod”
a=30 2=30
str="coding” BEERENUEEN str += “es”;

o

return str.substring(6);
Oct 21, 2011 Sprenkle - CSCI209 18

10/21/11

exampleMethod(int a)

1

Branch Coverage

String st
Test Suite:
a=3,
a=30
return str.substring(6);
Oct 21, 2011 Sprenkle - CSCI209 g

What Went Wrong? e;(ampleMithod(int a)
String str = “d”;

* Test suite had 100% branch ~ , |
(and statement) coverage but if(a<7)
missed a path , trwse

* Try to cover all paths in a*=2; str = “co”
program’s flow str += “riv”; + str;
» Also gets all branches, nodes 5

ifta > 10
» Called Path Coverage ¢)
trume
str +="ing”; str +="es”;

8\/

return str.substring(6);
Oct 21, 2011 Sprenkle - CSCI209 -

exampleMethod(int a)
1

Path Coverage

* Cover all paths in e SIF =
program’s flow 8 f(a<7)
* How many paths through true false
this method? s ;2/>; et
str += “riv”; + str;
5
ifta>10)

trwe

str +="ing”; str +="es”;

8\/

return str.substring(6);

leMethod(int
Path Coverage el et
* Cover all paths in e T =
program’s flow 5 f(a<7)
* How many paths through true false
this method? ® a:z/>; -
> 1-2-3-5-6-8 str +=“riv”; + str;
» 1-2-3-5-7-8 5
> 1-2-4-5-6-8 {a>)

> 1-24-57-8 o e Ngke
* What test cases would = str+=ing’ [str+=res’;
give us path coverage? s ~.

return str.substring(6);
Oct 21, 2011 Sprenkle - CSCI209 —

Oct 21, 2011 Sprenkle - CSCI209
int ged(int x, int y)
Example 3
1 false
/** . X —> while(x>0 &&y >0) —
* Euclid’s algorithm to
* calculate greatest true
* common divisor
*/ 2
public int gcd(int x, int y) { if(x>y)
while (x > 0& y>0) {
if(x>y){ true false
X -=y ; 3 4
} else { U = e
¥ —=x; X-=Y; y-=X;
}
5
return x+y;
}
6

return x+y; +——
Oct 21, 2011 Sprenkle - CSCI209 23

int gcd(int x, int y)

Path Coverage
;

fal
* How many paths e while(x > 08& Yy > 0) —m°
through this true
method? 2
» Too many to count, if(x>y)
test them all! 5 We
1-6 X-=y; yo=x
1-2-3-5-1-6
1-2-4-5-1-6 5
1-2-3-5-1-2-3-5-1-6
1-2-4-5-1-2-4-5-1-6
1-[2-(3]4)-5-1]*-6 6
return x+y; +——
Oct 21, 2011 Sprenkle - CSCI209 24

Testing Continuum

No testing Statement- Path- Exhaustive
Coverage Coverage Testing
Branch-
Coverage
Oct 21, 2011 Sprenkle - CSCI209 25

10/21/11

Comparison of Coverage

| No | | | Exhaustivel
S Path

testing tatement Branch Testing
Coverage .
verag Advantages Disadvantages
Criterion
Statement
Branch
Path
Oct 21, 2011 Sprenkle - CSCI209 26

Comparison of Coverage

Coverage

Criterion PEVEIERES

Disadvantages

Weak, may miss

Statement | Practical many faults

Practical, Stronger

Branch

than Statement

Weaker than Path

Path

Strongest

Infeasible, too many
paths to be practical

Oct 21, 2011

Sprenkle - CSCI209

27

Uses of Coverage Criteria

* “Stopping” rule > sufficient testing
» Avoid unnecessary, redundant tests
* Measure test quality
» Dependability estimate
» Confidence in estimate
* Specify test cases
» Describe additional test cases needed

Oct 21,2011 Sprenkle - CSCI209 28

Coverage Criteria Discussion

* Is it always possible for a test suite to cover all
the statements in a given program?
» No. Could be infeasible statements
¢ Unreachable code
¢ Legacy code
¢ Configuration that is not on site
* Do we need the test suite to cover 100% of
statements/branches to believe it is adequate?
» 100% coverage does not mean correct program
» But < 100% coverage does mean testing inadequacy

Oct 21, 2011 Sprenkle - CSCI209 29

Looking Ahead

* Monday
» Coverage tools, Design principles
* Wednesday
» Project 1 due
* Extra Credit Opportunities
» Friday, November 4, Turing Award in CS (10 pts)
¢ Commons — Women’s Resource Room

* Professor Stough to present on prize awarded to
Leslie G. Valiant

» Learning a Java API: Regular Expressions (up to 50)
* See web site, due by last day of class

Oct 21,2011 Sprenkle - CSCI209 30

