
11/2/11

1

Objectives

•  Liskov Substitution Principle
•  Good enough design
•  Refactoring for Extensibility

Nov 2, 2011 Sprenkle - CSCI209 1

Reflection on Assignment 9

•  How did you figure out what the code did?
•  How did you make design decisions?
• Were there any particularly difficult design

decisions?
Ø What were the tradeoffs?

•  Goal was readability; were there other issues
that you ran into/designed for?

Nov 2, 2011 Sprenkle - CSCI209 2

Assignment 9 Lessons
•  Code should be soft

Ø Eclipse makes code easier to change
•  The Refactor menu is a great resource

•  Keep asking yourself
Ø Is this understandable?

•  Will other people know what this code means?
Ø Will I remember what the code means?
Ø Maintaining code and bug fixes happen much

more than writing new code
Ø Does this code have a funny smell?

•  Literals, long methods, large classes, …

Nov 2, 2011 Sprenkle - CSCI209 3

Assignment 9 Lessons

•  If I’m having trouble writing test cases, that
may mean I need to change my code’s
design
Ø Ex: Smaller parts

Nov 2, 2011 Sprenkle - CSCI209 4

Review

• What are some metrics of code design?
Ø How can we use the metric?
Ø What is the intuition behind the metric?

Nov 2, 2011 Sprenkle - CSCI209 5

LISKOV SUBSTITUTION
PRINCIPLE

Oct 31, 2011 Sprenkle - CSCI209 6

11/2/11

2

Liskov Substitution Principle (LSP)

•  Named after Barbara Liskov
Ø MIT Professor of Engineering
Ø 2008 ACM Turing Award
Ø Contributions to programming

languages, pervasive
computing

Ø Trivia: first woman in the
United States to receive a
Ph.D. from a computer
science department
(Stanford, 1968)

Oct 31, 2011 Sprenkle - CSCI209 7

Liskov Substitution Principle (LSP)

•  The substitution principle:

•  In other words…

Oct 31, 2011 Sprenkle - CSCI209 8

If for each object o1 of type S there is an object o2 of
type T such that for all programs P defined in terms of

T, the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.	

If a module is using a base class, then it should ���
be able to replace the base class with a derived class ���

without affecting the functioning of the module. 	

Wing & Liskov, 1994

Code Smell: Using instanceof	

• Why isn’t this good code?	

•  How could we write this in a better way?	

Oct 31, 2011 Sprenkle - CSCI209 9

public void drawShape(Shape shape) {	
	if (shape instanceof Square) {	
	 	drawSquare(shape);	
	}	
	else if(shape instanceof Circle) {	
	 	drawCircle(shape);	
	}	

}	

Code Smell: Using instanceof

•  Previous example: had to know all of the
Shape classes
Ø Update whenever a Shape is added or removed

•  Better code: Polymorphic!

Oct 31, 2011 Sprenkle - CSCI209 10

public void drawShape(Shape shape) {	
	shape.draw();	

}	

Design by Contract

•  Methods of classes declare preconditions
and postconditions
Ø Preconditions must be met for method to

execute
Ø After executing, postconditions must be true

•  Example for Rectangle’s setWidth:
Ø myWidth == newWidth &&  
myHeight == oldHeight	

Oct 31, 2011 Sprenkle - CSCI209 11

Design by Contract and LSP
•  Methods of classes declare preconditions and

postconditions
Ø Preconditions must be met for method to execute
Ø After executing, postconditions must be true

•  Example for Rectangle’s setWidth:
Ø myWidth == newWidth &&  
myHeight == oldHeight	

•  For derivatives
Ø Preconditions can only be weakened
Ø Postconditions can only be strengthened
➥ Derivatives must adhere to constraints for base

class

Oct 31, 2011 Sprenkle - CSCI209 12

11/2/11

3

Design by Contract and LSP
•  Recall: User interacts with interface, e.g., the

base class

	
	
•  For derivatives

Ø Preconditions can only be weakened
Ø Postconditions can only be strengthened
➥ Derivatives must adhere to constraints for base

class

Oct 31, 2011 Sprenkle - CSCI209 13

Base	

Class	

Derived
Class	

Interface	

What if preconditions are stronger?	

What if postconditions are weaker?	

Summary of LSP

•  Liskov Substitution Principle (a.k.a. design by
contract) is an important feature of programs
that conform to the Open-Closed Principle
Ø Derived types must be completely substitutable

for their base types
Ø Derived types can then be modified without

consequence

Oct 31, 2011 Sprenkle - CSCI209 14

Rectangle Class

Oct 31, 2011 Sprenkle - CSCI209 15

public class Rectangle {	
	private int myHeight;	
	private int myWidth;	

	
	public void setWidth(int w) {	
	 	myWeight = w;	
	}	

	
	public void setHeight(int h) {	
	 	myHeight = h;	
	}	

	
	// getters…	

	
}	

Square Class

•  A square is a rectangle
Ø But a rectangle is not a square

•  In the interest of code reuse

•  Any problems with this implementation?

Ø Inherits:

Oct 31, 2011 Sprenkle - CSCI209 16

public class Square extends Rectangle 	

private int myHeight;	
private int myWidth;	
public void setWidth(int w);	
public void setHeight(int h);	

To Keep Square Consistent…

Oct 31, 2011 Sprenkle - CSCI209 17

public void setWidth(int w) {	
	super.setWidth(w);	
	super.setHeight(w);	

}	
		

public void setHeight(int h) {	
	super.setWidth(h);	
	super.setHeight(h);	

}	

But What About Users of Classes?

•  Consider the function:

• What happens if method is called with a
Square object?

Oct 31, 2011 Sprenkle - CSCI209 18

public void testMethod(Rectangle r) {	
	r.setWidth(5);	
	r.setHeight(4);	
	assertEquals(20, r.getWidth()*r.getHeight());	

}	

11/2/11

4

The Problem

•  A Square object is not a Rectangle
object

•  Behaviors are different
•  Clients depend on behaviors

Oct 31, 2011 Sprenkle - CSCI209 19

Lesson: All derivatives of class must
have the same behavior 	

Discussion of Abstraction

• What does abstraction allow?

•  Are there any limitations to abstraction?

Oct 31, 2011 Sprenkle - CSCI209 20

Summary of Designing for Change

•  Can depend on code that is stable and
unlikely to change
Ø Example of stable code: System.out	

Oct 31, 2011 Sprenkle - CSCI209 21

Use abstraction for code ���
that is likely to change	

Refactoring Summary
•  Write code and then rewrite code

Ø Eye toward extensibility, flexibility, maintainability,
and readability

Ø Maintain correctness
•  Reading/understanding other people’s code can

be difficult
Ø Make your code readable, understandable

•  Probably impossible to design/write “correctly”
the first time
Ø A lot harder to get the logic right, make sure you’re

not creating bugs, know/check the right answer…
Ø Could cause yourself headaches coding this way

first

Oct 31, 2011 Sprenkle - CSCI209 22

Good-Enough Design Discussion

Perfect Design
ü Follows all design

principles
Ø  OCP, Single Responsibility, no

code smells, …

-  May not be possible
Ø  Infinite refactoring,

development

− Code never released

Good-enough Design
− Not everyone agrees on

design
− Maintenance requires

changes to a few places
ü Code gets released to

customers

Oct 31, 2011 Sprenkle - CSCI209 23

Similar tradeoffs in testing	

PMD Reports
•  Java source code analyzer
•  Looks for possible bugs, poor coding

practices
Ø Duplicate code
Ø Dead code
Ø Empty if/while/catch blocks
Ø Suboptimal code (e.g., Strings, StringBuffers)
Ø And more!

•  Eclipse Plugin:
Ø Update site: http://pmd.sourceforge.net/eclipse

Oct 31, 2011 Sprenkle - CSCI209 24 See Also: FindBugs	

11/2/11

5

REFACTORING FOR
EXTENSIBILITY

Oct 31, 2011 Sprenkle - CSCI209 25

Simulating a Roulette Game

•  See handout

Oct 31, 2011 Sprenkle - CSCI209 26

Get a Solution

•  Import Existing Project
Ø /home/courses/cs209/handouts/
roulette.tar	

Oct 31, 2011 Sprenkle - CSCI209 27

Understanding Code

•  Execute the code
Ø What is the main driver for this project?

• What are each class’s responsibilities?

• What does test.RouletteTestSuite
do?

Oct 31, 2011 Sprenkle - CSCI209 28

Bug in the Code

•  Determining if Odd/Even Bet was won is
incorrect

Oct 31, 2011 Sprenkle - CSCI209 29

Understanding Code

•  Focus: how open is the code to adding new
kinds of bets and how closed it is to
modification?
Ø How many classes know about the Bet class?
Ø What code would need to be added to Game to

allow the user to make another kind of bet that
paid one to one odds and was based on whether
the number spun was high (between 19 and 36)
or low (between 1 and 18)?

Oct 31, 2011 Sprenkle - CSCI209 30

11/2/11

6

Looking Ahead

•  Friday:
Ø Extra Credit Opportunity: 12:30 p.m., Women’s

Resource Room
Ø 3:30 p.m., Noah Egorin

•  Next Wednesday: Roulette Refactoring due
•  Next Friday: 2nd Exam

Ø Focus: Python vs. Java, collections, testing,
coverage, design principles (tradeoffs), GUIs

Ø Terminology

Nov 2, 2011 Sprenkle - CSCI209 31

