Objectives

Finish up Exceptions
Files
Streams

Sept 30, 2011 Sprenkle - CSCI209 1

Review

What are the two types of exceptions?
What are some ways to handle exceptions?

What does it mean to “advertise” an
exception?

Sept 30, 2011 Sprenkle - CSCI209 2

Practice: try/catch/finally Blocks
Which statements run

What to do with a Caught Exception?
Dump the stack after the exception occurs

» What else can we do?

Generally, two options:
1. Catch the exception and recover from it
2. Pass exception up to whoever called it

Sept 30, 2011 Sprenkle - CSCI209 4

try { if:
statementl; i
statement2; >Neither statementl
3) nor statement?2
catch (EOFException e) { throws an exception
statement3;
statement4; »statementl throws an
]}C_ " EOFException
tna }s'tf,temenﬁ; »statement?2 throws an
3 EOFException
»statementl throws an
IOException
Sept 30, 2011 Sprenkle - CSCI209 3
Design Decision: Handled _—» GUI

here

To Throw or Catch?
Problem: lower-level exception

propagated up to higher-level code DB
Example: user enters account t A
information and gets exception Fxception

message “field exceeds allowed
length in database”

What do you think happened?
Is this a good solution?

Sept 30, 2011 Sprenkle - CSCI209 5

Design Decision: Handled _—» GUI

To Throw or Catch? e

Problem: lower-level exception
propagated up to higher-level code

DB
Example: user enters account t
mformatlop_and gets exception Exception
message “field exceeds allowed here

length in database”
» Lost context

» Lower-level detail polluting higher-level
API

Solution: higher-levels should catch lower-level exceptions
and throw them in terms of higher-level abstraction

Sept 30, 2011 Sprenkle - CSCI209 6

Exception Translation

y {
// Call lower-level abstraction

catch (LowerLevelException ex) {
// log exception ..
throw new HigherLevelException(..);

Special case: Exception Chaining

» When higher-level exception needs info from

lower-level exception
Most standard

try {
// Call lower-level abstraction Exceptions have this
}
catch (LowerLevelException cause) { constructor
// log exception ..
throw new HigherLevelException(cause);
}
< 7

[r——

Guidelines for Exception Translation

Avoidance!

» Try to ensure that lower-level APIs succeed

» Ex: verify that your parameters satisfy invariants
Insulate higher-level from lower-level
exceptions

» Handle in some reasonable way

» Always log problem so admin can check

If can’t do previous two, then use exception
translation

Sept 30, 2011 Sprenkle - CSCI209 8

Summary: Methods Throwing Exceptions

API documentation tells you if a method can
throw an exception
» If so, you must handle it
If your method could possibly throw an
exception (by generating it or by calling
another method that could), advertise it!
» If you can’t handle every error, that's OK...let
whoever is calling you worry about it
» However, they can only handle the error if you
advertise the exceptions you can’t deal with

Sept 30, 2011 Sprenkle - CSCI209 9

Programming with Exceptions

Exception handling is slow

Use one big try block instead of
nesting try-catch blocks

» Speeds up Exception Handling

» Otherwise, code gets too messy
catch O {

Don't ignore exceptions (e.g., catch
block does nothing)

» Better to pass them along to higher calls 3
catch OO {
}

try {

Sept 30, 2011 Sprenkle - CSCI209

Creating Our Own Exception Class

Try to reuse an existing exception
» Match in name as well as semantics

If you cannot find a predefined Java
Exception class that describes your
condition, implement a new Exception
class!

Sept 30, 2011 Sprenkle - CSCI209 "

Creating Our Own Exception Class

public class FileFormatException extends IOException {
public FileFormatException() {

3 ‘ What happens in this constructor implicitly?

public FileFormatException(String message) {
super(message);

// other 2 standard constructors..

| Is this a checked or unchecked exception?

Can now throw exceptions of type
FileFormatException

Sept 30, 2011 Sprenkle - CSCI209 12

Guidelines for Creating Your Own
Exception Classes

Include accessor methods to get more
information about the cause of the exception
» “failure-capture information”

Checked or unchecked exception?
» Checked: forces API user to handle BUT more
difficult to use API
Has to handle all checked exceptions
» Use checked exception if exceptional condition
cannot be prevented by proper use of APl and
API user can take a useful action afterward

Sept 30, 2011 Sprenkle - CSCI209 13

Discussion: Benefits of Exceptions

Been talking about details...

Why does Java have exceptions as part of
the language?

Why does Java add some features that
Python doesn’t have?

Sept 30, 2011 Sprenkle - CSCI209 14

Benefits of Exceptions

Ease debugging
» Stack trace
Separates error-handling code from “regular” code
» Error code is in catch blocks at end
» Descriptive messages with exceptions
Propagate methods up call stack
» Let whoever “cares” about error handle it
Group and differentiate error types
Checked exceptions: Force error checking/handling
» Otherwise, won’t compile
» Does not guarantee “good” exception handling

Sept 30, 2011 Sprenkle - CSCI209 15

FILES

Sept 30, 2011 Sprenkle - CSCI209 16

java.io.File Class

Represents a file or directory
Provides functionality such as
» Storage of the file on the disk
» Determine if a particular file exists
» When file was last modified
» Rename file
» Remove/delete file

7o

Sept 30, 2011 Sprenkle - CSCI209 17

Making a File Object

Simplest constructor takes full file name
(including path)
» If don’t supply path, Java assumes current
directory (.)

File f1 = new File("chicken.data");
> Creates a File object representing a file named

“chicken.data” in the current directory
» Does not create a file with this name on disk

Sept 30, 2011 Sprenkle - CSCI209 18

Files, Directories, and Useful Methods

A File object can represent a file or a
directory

» Directories are special files in most modern

operating systems

Use isDirectory() and/or isFile() for
type of file File object represents

Use exists() method

» Determines if a file exists on the disk

Sept 30, 2011 Sprenkle - CSCI209 19

More File Constructors
String for the path, String for filename

File f2 = new File(
"/home/courses/cs209/handouts", "chicken.data");

File for directory, String for filename

File dir= new File("/home/courses/cs2@9/handouts™);
File f4 = new File(dir, "chicken.data");

Sept 30, 2011 Sprenkle - CSCI209 20

“Break” any of Java’s Principles?

Sept 30, 2011 Sprenkle - CSCI209 21

Not Portable

Accessing the file system is inherently not
portable

> In Windows, paths are “c:\\dir”

> In Unix, paths are “/home/courses/dir”
Relies on underlying file system/operating
system to perform actions

Sept 30, 2011 Sprenkle - CSCI209 22

Handling Portability Issues

Static fields in File class
»static separator
Unix: "/"
Windows: "\\"
»static pathSeparator
For separating a list of paths
Unix: ":"
Windows: ";"
Use relative paths, with separators

Sept 30, 2011 Sprenkle - CSCI209 23

java.io.File Class

25+ methods
»Manipulate files and directories
»Creating and removing directories
»Making, renaming, and deleting files
»Information about file (size, last modified)
» Creating temporary files

See online API documentation

FileTest.java
Sept 30, 2011 Sprenkle - CSCI209 24

STREAMS

Sept 30, 2011 Sprenkle - CSCI209 25

Streams

Java handles input/output using streams,
which are sequences of bytes

Stream
Program

Data
(0011010000)1001000011)1001010101) Destination

output stream: an object to which we can
write a sequence of bytes

abstract class: java.io.OQutputStream

Sept 30, 2011 Sprenkle - CSCI209 27

Streams

Java handles input/output using streams,
which are sequences of bytes

Stream Program

input stream: an object from which we can
read a sequence of bytes
abstract class: java.io.InputStream

Sept 30, 2011 Sprenkle - CSCI209 26

Java Streams

MANY (80+) types of Java streams
In java.io package
Why stream abstraction?
» Information stored in different sources is
accessed in essentially the same way

Example sources: file, on a web server across the
network, string

» Allows same methods to read or write data,
regardless of its source

Create an InputStream or OutputStream of
the appropriate type

Sept 30, 2011

Sprenkle - CSCI209 28

java.io Classes Overview

Two types of stream classes, based on
datatype: Byte, Text

Abstract base classes for binary data:

InputStream

OutputStream

Abstract base classes for text data:

Writer

Sept 30, 2011 Sprenkle - CSCI209 29

Byte Streams

For binary data

In java.io package

Fisowprstres |

Abstract Base Classes

ByteArrayOutputStrean Printstrean

PipedOutputStrean DataOutputstrean
FilterOutputstrean BufferedOutputStrean

Shaded: Read to/write from data sinks

White: Does some processing

Sept 30, 2011 Sprenkle - CSCI209 30

Character Streams

BufferedReader H LineNumberReader |
In java.io package

Handle any character

InputStreamReader H FileReader | in Unicode set

For Text

FilterReader H PushbackReader |

\ StringReader CharArrayWriter

Outputstreantiriter FileWriter
Abstract Base Classes

S0 S s o H{ e

Sept 30, 2011 Sprenkle - CSCI209 31

Shaded: Read to/write from data sinks
White: Does some processing

Console I/0

Output:
» System.out is a PrintStream object
Input
> System.1in is an InputStream object
» Throws exceptions if format of input data is not
correct
Handle in try/catch

Sept 30, 2011 Sprenkle - CSCI209 32

Opening & Closing Streams

Streams are automatically opened when
constructed
Close a stream by calling its close()
method
» Close a stream as soon as object is done with it
» Free up system resources

Sept 30, 2011 Sprenkle - CSCI209 33

Reading & Writing Bytes

Abstract parent class: InputStream

»abstract int read()

reads one byte from the stream and returns it

Concrete input stream classes override read
() to provide appropriate functionality

»e.g., FileInputStream's read() reads one

byte from a file

Similarly, OutputStream class has abstract

write() to write a byte to the stream

Sept 30, 2011 Sprenkle - CSCI209 34

Reading & Writing Bytes

read() and write() are blocking operations
~If a byte cannot be read from the stream, the
method waits (does not return) until a byte is read
available() : get the number of bytes that
are available for reading
Example use:
int bytesAvailable = System.in.available();

if (bytesAvailable > 0)
System.in.read(byteBuffer);

Sept 30, 2011 Sprenkle - CSCI209 35

File Input and Output Streams

FileInputStream: provides an input
stream that can read from a file
»Constructor takes the name of the file:

FileInputStream fin = new
FileInputStream("chicken.data");

>Or, uses a File object ...

File inputFile = new File("chicken.data");
FileInputStream fin = new FileInputStream(inputFile);

Sept 30, 2011 Sprenkle - CSCI209 FileTest2. quq 36

To Do

Assignment 7
» Modifying Olympic Score generator
Read difficulty score from console
Read execution scores from a file
» Filename comes from console

» Due Friday, but should start before midterm

Next Wednesday: Midterm
» Prep document online

Sept 30, 2011 Sprenkle - CSCI209

37

