
11/7/11

1

Objectives

•  GUIs in Java
•  Layout Managers
•  Event Handling

Nov 7, 2011 Sprenkle - CSCI209 1

Aside: On ING Direct’s site

Nov 7, 2011 Sprenkle - CSCI209 2

Assignment 10 Notes

•  Focus on Extensibility
•  But, handle other code smells as well
•  Due Wednesday

•  Any questions?

Nov 7, 2011 Sprenkle - CSCI209 3

GUI Review

• What are the two main packages for GUI
development in Java?

•  Is GUI development looking a little difficult?
Ø Why?

Nov 7, 2011 Sprenkle - CSCI209 4

Nov 7, 2011 Sprenkle - CSCI209 5

Review: JFrame

•  Top-level window
Ø Has title, border

•  Contains ContentPane	
Ø A Container object that

holds components you add,
placing them in the frame

Ø The part of the frame that
holds UI components

ContentPane	

JFrame	 Review: Building a GUI
1. Create (top down):

Ø Frame
Ø Container
Ø Components
Ø Listeners

2. Add (bottom up):
Ø Listeners into

components
Ø Components into

panel
Ø Panel into frame

Container

JButton

Listener

JFrame

JLabel

Nov 7, 2011 6 Sprenkle - CSCI209

Content
Pane Create Ad

d

11/7/11

2

Placement of Components
•  How does the panel know where to place a

button?
•  How does the panel know where to place the

next button?
•  How does the panel know where to place

any component that is added to it?

Nov 7, 2011 Sprenkle - CSCI209 7

LAYOUT MANAGERS

Nov 7, 2011 Sprenkle - CSCI209 8

Layout Managers

•  Java uses layout managers to place
components inside a container

• LayoutManager automatically handles
placement of components
Ø When a component is added to a container

(through add), layout manager decides where to
place the component

Nov 7, 2011 Sprenkle - CSCI209 9

Border Layout Manager

•  Default layout manager of the content pane
for JFrame	

•  Lets you choose where you want to place
each component

Nov 7, 2011 Sprenkle - CSCI209 10

with respect to
the container	

Center

North

South

West East

Border Layout Regions

•  Edge components are laid out first
•  Center occupies remaining space

Nov 7, 2011 Sprenkle - CSCI209 11

Center

North

South

West East

Border Layout Rules

•  Grows all components to fill available space
•  If container is resized, edge components are

redrawn and center region size recomputed
•  To add a component to a container using a

border layout
Ø Ex: JFrame’s content pane

Nov 7, 2011 Sprenkle - CSCI209 12

Container contentPane = getContentPane();	
contentPane.add(button, BorderLayout.SOUTH);	

11/7/11

3

Adding Components Using a Border
Layout

•  If no region specified, assumes center region

Ø Recall: border layout grows component to fit
specified region

Nov 7, 2011 Sprenkle - CSCI209 13

Container contentPane = getContentPane();	
contentPane.add(button, BorderLayout.SOUTH);	

What happens if we add multiple components,
e.g., three buttons, without specifying a region?	

A Border Layout Limitation

•  Last button added grows to completely fill
center region

•  First two buttons were discarded/overwritten
by each subsequently added component

Nov 7, 2011 Sprenkle - CSCI209 14

Three

Default Layout Managers

• JFrame’s content pane: BorderLayout	
• Panel’s: FlowLayout	

Ø What we used on Friday

Nov 7, 2011 Sprenkle - CSCI209 15

Changing Layout Managers

•  Any container can use any layout manager
•  Use setLayout to change layout manager

before adding components

Nov 7, 2011 Sprenkle - CSCI209 16

// sets layout to a new flow layout manager that	
// aligns row components to the left and uses a 20 pixel	
// horizontal separation and 20 pixel vertical separation	
setLayout(new FlowLayout(FlowLayout.LEFT, 20, 20));	
	
// sets layout to a new border layout manager that	
// uses a 45 pixel horizontal separation between	
// components (regions) and a 20 pixel vertical separation	
setLayout(new BorderLayout(45, 20));	

The Flow Layout Manager

•  Default layout manager for a panel

•  Lines components up horizontally until no
more room in container
Ø Then starts a new row of components

•  If user resizes component, layout manager
automatically reflows components

Nov 7, 2011 Sprenkle - CSCI209 17

The Flow Layout Manager

•  Can choose how to arrange components in a
row
Ø Default: center each row
Ø Other options: left or right align

•  Change alignment using setLayout

Ø Panel set to use a flow layout manager with row
components aligned to the left

•  Another constructor has hgap and vgap for
gaps to put around components

Nov 7, 2011 Sprenkle - CSCI209 18

setLayout(new FlowLayout(FlowLayout.LEFT));	

11/7/11

4

Combining Panels
•  Panels act as (smaller) containers for UI

elements
•  Can be arranged inside a larger panel by a

layout manager
•  Use additional panels to address Border

Layout problem
Ø Create a panel
Ø Add some buttons to it
Ø Add that panel to a region in content pane

Nov 7, 2011 Sprenkle - CSCI209 19

Combining Panels

Nov 7, 2011 Sprenkle - CSCI209 20

JButton	 JButton	

JTextArea	

Combining Panels

Nov 7, 2011 Sprenkle - CSCI209 21

North	
	

JPanel: 	
BorderLayout	

	
	

Center	

JFrame	

JPanel: FlowLayout	

JButton	JButton	

JTextArea	

Using Additional Panels

•  Get fairly accurate and precise placement of
components

•  Use nested panels with

Nov 7, 2011 Sprenkle - CSCI209 22

FlexibleLayout.java	

Layout Use
BorderLayout	 Content panes and enclosing panels

Flow Layouts Panels containing buttons and other
UI components

Another Layout Manager: Grid

•  Divides container into columns and rows of
equal size, which collectively occupy the
entire container region

•  Rows and columns are aligned like a table
Ø When container is resized, the “cells” grow and/

or shrink
Ø Cells always maintain identical sizes

Nov 7, 2011 Sprenkle - CSCI209 23

Grid Layout Manager Construction
•  Number of rows and columns in layout

•  Can specify a horizontal and vertical
separation between rows and columns:

Nov 7, 2011 Sprenkle - CSCI209 24

panel.setLayout(new GridLayout(5, 4)); // 5 rows, 4 cols	

panel.setLayout(new GridLayout(5, 4, 20, 20)); 	
// 5 rows, 4 cols, 20 pixels between rows & between cols	

11/7/11

5

•  Components added sequentially
•  1st add adds component to 1st row, 1st col
•  2nd add adds component to 1st row, 2nd col

•  And so forth until 1st row is filled
•  Then 2nd row begins with the 1st column
•  Continues until the entire container is filled

Adding Components to a Grid Layout

Nov 7, 2011 Sprenkle - CSCI209 25

Grid Layout Rules
•  Components are resized to take up entire

cell
•  Restrictive but can be useful for some

applications
•  Example: Create a row of buttons of identical

size
1.  Make a panel that has a grid layout with one

row
2.  Add a button to each cell
3.  Set horiz/vert separation so buttons are not

touching
Nov 7, 2011 Sprenkle - CSCI209 26

Layout Manager Heuristics

Nov 7, 2011 Sprenkle - CSCI209 27

Left to right,

Top to bottom

c

n

s

e w

FlowLayout	 GridLayout	

BorderLayout	

none,
programmer
sets x,y,w,h

null

One at a time

CardLayout	 GridBagLayout	

JButton
HANDLING USER
INTERACTIONS

Nov 7, 2011 Sprenkle - CSCI209 28

Event-Driven Programming

•  User actions (e.g., mouse clicks, key
presses), sensor outputs, or messages from
other applications determine flow of program

•  Application architecture:

Nov 7, 2011 Sprenkle - CSCI209 29

while (true) {	
	event = waitForEvent();	
	handleEvent(event);	

}	

Event Basics

•  An event is generated from an event source
and is transmitted to an event listener

•  Event sources allow event listeners to
register with them
Ø Registered listener requests event source send

its event to listener when event occurs

Nov 7, 2011 Sprenkle - CSCI209 30

Event	

Source	

Event	

Listener	

Event	

11/7/11

6

Java Event Handling

•  All events are objects of event classes
Ø Derive from java.util.EventObject

•  Event source
Ø Sends out event objects to all registered

listeners when that event occurs
•  Listener

Ø Implements a listener interface
Ø Uses EventObject to determine its reaction to

the event

Nov 7, 2011 Sprenkle - CSCI209 31

Java Event Handling

•  Register a listener with an event source:

•  Example:

Ø Whenever an “action event” occurs on button,
listener is notified
•  For buttons, an action event is a button click

Nov 7, 2011 Sprenkle - CSCI209 32

ActionListener listener = . . .;	
JButton button = new JButton(“Click Me!”);	
button.addActionListener(listener);	

eventSource.addEventListener(
	 	 	eventListenerObject);	

Listener Objects

•  A listener object must be an instance of a
class that implements the appropriate
interface
Ø For buttons, that’s ActionListener	

•  Listener class must implement
actionPerformed(ActionEvent event)	

Nov 7, 2011 Sprenkle - CSCI209 33

Listener Objects and Event Handling

• When a user clicks button, JButton object
generates an ActionEvent object

• JButton passes generated event object to
listener object’s actionPerformed

•  A single event source can have multiple
listeners listening for its events
Ø Source calls actionPerformed on each of its

listeners
Nov 7, 2011 Sprenkle - CSCI209 34

Which makes JButton a what?

An Example of Event Handling

•  Suppose we want to make a panel that has
three buttons on it
Ø Each button has a color associated with it
Ø When user clicks a button, background color of

panel changes to the corresponding color
• We need

1.  A panel with 3 buttons on it
2.  3 listener objects, one registered to listen for a

button’s events

Nov 7, 2011 Sprenkle - CSCI209 35

Event Handling Example

1. Make some buttons and add them to panel

Nov 7, 2011 Sprenkle - CSCI209 36

public class ColoredBackground extends JFrame {	
 public ColoredBackground() {	

	…	
	Container cp = getContentPane();	

	
	JButton red = new JButton("Red"); 	
	red.setForeground(Color.red);	 	
	JButton green = new JButton("Green");
	green.setForeground(Color.green); 	
	JButton blue = new JButton("Blue");	
	blue.setForeground(Color.blue); 	 		

	
	cp.add(red);	
	cp.add(green);	
	cp.add(blue);	
	…	

11/7/11

7

Listener Objects

2. Create listeners for our buttons (event
sources)
Ø An action listener can be any class that

implements the ActionListener interface
Ø Make a new class that implements the interface
• actionPerformed method should set the

background color of panel

Nov 7, 2011 Sprenkle - CSCI209 37

Our Listener Class: ColorAction	

Nov 7, 2011 Sprenkle - CSCI209 38

class ColorAction implements ActionListener {	
 public ColorAction(Color c) { 	

	backgroundColor = c; 	
 }	
	
 public void actionPerformed(ActionEvent evt) {	
 	// set panel background color here	

	. . . 	
 }	
	
 private Color backgroundColor;	
}	

How can we do this?	

Discussion to come…	

Registering Our Listener Class

3. Create ActionListener objects and
register them with the buttons

Nov 7, 2011 Sprenkle - CSCI209 39

ColorAction greenAction = new ColorAction(Color.green);	
ColorAction blueAction = new ColorAction(Color.blue);	
ColorAction redAction = new ColorAction(Color.red);	
	
green.addActionListener(greenAction);	
blue.addActionListener(blueAction);	
red.addActionListener(redAction);	

These are JButtons	

Registering Our Listener Class

• When a user clicks the button with the label
“Green”, the green JButton object
generates an ActionEvent	
Ø Passes the ActionEvent object to
greenAction’s actionPerformed method

Ø Method can then set frame’s background color

Nov 7, 2011 Sprenkle - CSCI209 40

Any implementation issues?	

The Listener Class & the Frame

• ColorAction objects don’t have access to
frame
Ø How can they change the background color?

•  Possible solutions?

Nov 7, 2011 Sprenkle - CSCI209 41

The Listener Class & the Frame

• ColorAction objects don’t have access to
frame
Ø How can they change the background color?

•  Two possible solutions:
1.  Add a frame instance field to ColorAction

class and set it in constructor
• ColorAction object knows which frame it is

associated with and can call appropriate method
to change its background color

2.  Make ColorAction an inner class of class

Nov 7, 2011 Sprenkle - CSCI209 42

11/7/11

8

Listener as an Inner Class

Nov 7, 2011 Sprenkle - CSCI209 43

class ColoredBackground extends JFrame {	
 // ColoredBackground code …	
 . . .	
	
 private class ColorAction implements ActionListener {	
 . . .	
 private Color backgroundColor;	
 public void actionPerformed(ActionEvent evt) {	
 	 	setBackground(backgroundColor);	
 	 	repaint();	
 }	
 }	
}	 Where are these

methods coming from?	

Close Up: actionPerformed

•  ColorAction does not have setBackground or
repaint method

•  Since ColorAction is an inner class of
ColoredBackground, ColorAction can directly
access ColoredBackground’s instance fields and
methods
1.  Inner class calls outer class’s method

•  Parameter: inner’s private data (backgroundColor)
2.  Inner calls outer class’s repaint() method

•  Redraw the frame

Nov 7, 2011 Sprenkle - CSCI209 44

public void actionPerformed(ActionEvent evt) {	
	setBackground(backgroundColor);	
	repaint();	

}	

Event Listeners as Inner Classes
•  A common and beneficial practice
•  Event listener objects typically need to

access/modify other objects when their
corresponding event occurs

•  It is often possible to place the listener class
inside the class whose state the listener
should modify

•  It’s also good OOP design
Ø Doesn’t violate encapsulation rules
Ø Makes code easier

Nov 7, 2011 Sprenkle - CSCI209 45

A Different Listener Approach

•  Any object of a class that implements
ActionListener can listen for action
events from a source
Ø Could make ColoredBackground listen for its

own buttons’ events
Ø Implement interface and do correct registering

with the buttons

Nov 7, 2011 Sprenkle - CSCI209 46

A Different Listener Approach

Nov 7, 2011 Sprenkle - CSCI209 47

class ColoredBackground2 extends JFrame 	
	implements ActionListener {	

	
 public ColoredBackground2() {	
 	. . . 	

	green.addActionListener(this);	
	blue.addActionListener(this);	
	red.addActionListener(this);	

 }	
 . . . 	
	
 public void actionPerformed(ActionEvent evt) {	

	// set background color	
	. . .	

 }	
}	

Runs whenever any of the buttons is clicked.	

What do we need to do in here?	

A Different Listener Approach

• ColoredBackground’s
actionPerformed runs whenever any of
the buttons is clicked
Ø How do we find out which button was pressed?

Nov 7, 2011 Sprenkle - CSCI209 48

public void actionPerformed(ActionEvent evt) {	
	// gets the source that generates this event	
	Object source = evt.getSource();	

	
	if (source == green) . . .	
	else if (source == blue) . . .	
	else if (source == red) . . .	

}	
Why ==, not equals()?	

11/7/11

9

Which approach is better?

Nov 7, 2011 Sprenkle - CSCI209 49

Which approach is better?
•  Inner class approach

makes sense from an
OOP design point
Ø Each event source has

its own listener, which
can directly modify
panel as it needs

•  Having panel itself
listen is much more
straightforward
Ø Since panel needs to

change, have it listen!
Ø But, handling method

must determine event’s
source and switch its
behavior
•  Difficult with many event

sources

Nov 7, 2011 Sprenkle - CSCI209 50

Consider: How easy to add additional
event sources for each case?	

Which approach is better?

•  Neither way is “better”
•  Inner classes make sense

Ø Somewhat confusing at first
Ø Great benefits
Ø We will tend to use inner class listeners

Nov 7, 2011 Sprenkle - CSCI209 51

Simplification of our Event Handlers

•  For each button, we do four things:
1.  Construct the button with a label string
2.  Add the button to the panel
3.  Construct an action listener with the appropriate

color
4.  Register that listener with the button

Nov 7, 2011 Sprenkle - CSCI209 52

What does that call for?	

Simplification of our Event Handlers

•  Makes the ColoredBackground
constructor much simpler…

Nov 7, 2011 Sprenkle - CSCI209 53

void makeButton(String label, Color backgroundColor) {	
 JButton button = new JButton(label);	
 add(button);	
 ColorAction action = new ColorAction(backgroundColor);	
 button.addActionListener(action);	
}	

public ColoredBackground() {	
	…	
	makeButton(“Yellow”,Color.yellow);	
	makeButton(“Blue”,Color.blue);	
	makeButton(“Red”,Color.red);	

}	

Simplifying Further

• We only use the ColorAction class in
makeButton method

•  How can we further simplify the code?

Nov 7, 2011 Sprenkle - CSCI209 54

void makeButton(String label, Color backgroundColor) {	
 JButton button = new JButton(label);	
 add(button);	
 ColorAction action = new ColorAction(backgroundColor);	
 button.addActionListener(action);	
}	

11/7/11

10

Simplifying Further

•  Make the ColorAction class an
anonymous inner class

•  Since only use class at one point, define
class on the fly

Nov 7, 2011 Sprenkle - CSCI209 55

An Anonymous Class Listener

Nov 7, 2011 Sprenkle - CSCI209 56

void makeButton(String label, final Color bgColor) {	
 JButton button = new JButton(label);	
 add(button);	
	
 button.addActionListener(new ActionListener() {	

	 public void actionPerformed(ActionEvent evt) {	
 	 	setBackground(bgColor);	

	 	repaint();	
	 }	
	});	

}	

Nov 7, 2011 Sprenkle - CSCI209 57

Anonymous Inner Classes

•  Confusing syntax!
•  Create a new class that implements
ActionListener interface
Ø Define required method, actionPerformed,

inside braces
•  Any needed parameters are inside the

parentheses, following the supertype name:
new SuperType(construction parameters) {	

	inner class methods and data	
}	

Nov 7, 2011 Sprenkle - CSCI209 58

Anonymous Inner Classes

• Supertype can be an interface or a class
Ø If an interface, inner class implements the

interface and required methods
Ø If a class, the inner class extends that class

•  Anonymous inner classes do not have
constructors
Ø Parameters are passed to superclass’s

constructor
Ø If inner class implements an interface, no

construction parameters

An Anonymous Class Listener

Nov 7, 2011 Sprenkle - CSCI209 59

void makeButton(String label, final Color bgColor) {	
 JButton button = new JButton(label);	
 add(button);	
	
 button.addActionListener(new ActionListener() {	

	 public void actionPerformed(ActionEvent evt) {	
 	 	setBackground(bgColor);	

	 	repaint();	
	 }	
	});	

}	

Interface	

(no params)	

Method required to be
implemented for interface	

Nov 7, 2011 Sprenkle - CSCI209 60

Anonymous Inner Classes
•  Carefully differentiate between

Ø Construction of a new object of a class
Ø Construction of an object of an anonymous inner

class that extends that class…

// this is a Person object	
Person queen = new Person(“Mary”);	
	
// this is an object of an anonymous	
// inner class extending the Person class	
Person count = new Person(“Dracula”) {. . .};

		

11/7/11

11

Finale!

•  Show different versions of
ColoredBackground GUI

Nov 7, 2011 Sprenkle - CSCI209 61

Midterm Prep
•  Java

Ø Collections Framework
Ø Comparison with Python
Ø Jar files

•  Software Development
Ø Models
Ø Testing
Ø Design Principles
Ø Code smells
Ø Refactoring

•  GUI programming
Ø Event handling, inner classes

Nov 7, 2011 Sprenkle - CSCI209 62

Document posted online	

TODO

•  Assignment 10: Due on Wednesday
•  Exam 2 Friday

Nov 7, 2011 Sprenkle - CSCI209 63

