
11/14/11

1

Objectives

•  Design Patterns

Nov 14, 2011 Sprenkle - CSCI209 1

Animation Review

• What type of object do we use to “draw” in
Java?
Ø What are some things we can do?

Nov 14, 2011 Sprenkle - CSCI209 2

My German Word of the Day: die Benutzeroberfläche

DESIGN PATTERNS

Nov 14, 2011 Sprenkle - CSCI209 3

Design Pattern

•  Not a finished design that can be
transformed directly into code

•  Description or template for how to solve a
problem that can be used in many different
situations
Ø “Experience reuse”, rather than code reuse

Nov 14, 2011 Sprenkle - CSCI209 4

General reusable solution to a commonly
occurring problem in software design	

Defined Design Patterns

•  Software best practices
•  Catalogued and discussed in Design

Patterns: Elements of Reusable Object-
Oriented Software
Ø Written by the “Gang of Four”:

Erich Gamma, Richard Helm, Ralph Johnson
and John Vlissides
•  Erich Gamma also co-wrote JUnit framework

Ø Didn’t design the patterns; identified them

Nov 14, 2011 Sprenkle - CSCI209 5

Applying Design Patterns

1. Recognize problem as one that can be
solved by a design pattern

2. Apply pattern to your problem

Nov 14, 2011 Sprenkle - CSCI209 6

Danger: over-applying design patterns	

Ø  Fall back: Identify and resolve code smells	

11/14/11

2

Motivating Example

•  Birds
Ø Various flying behaviors (some fly, some don’t)
Ø Make different sounds
Ø Examples: Duck, Penguin, Hummingbird,

Ostrich, Chicken, Oriole, …

Nov 14, 2011 Sprenkle - CSCI209 7

How can we represent different birds?	

Designing Flexible Behaviors

•  Include behaviors in abstract Bird class
Ø FlyBehavior object has performFly()

method
Ø SoundBehavior object has makeSound()

method

•  Could have setter methods in Bird class to
change these
Ø Example: bird’s wings get clipped

Nov 14, 2011 Sprenkle - CSCI209 8

Designing Flexible Behaviors

Nov 14, 2011 Sprenkle - CSCI209 9

public abstract class Bird {	
	protected FlyBehavior flyB;	
	protected SoundBehavior soundB;	
		
	public Bird() {	
	 	…	
	}	
		
	public void performSound() {	
	 	soundB.makeSound();	
	}	

	
	public void performFly() {	
	 	flyB.performFly();	
	} 	

} 	

Designing Flexible Behaviors

Nov 14, 2011 Sprenkle - CSCI209 10

public class Duck {	
	//Recall: protected FlyBehavior flyB;	
	//Recall: protected SoundBehavior soundB;	
		
	public Duck() {	
		

	
	}	
	…	

} 	

What do we need to
do in here?	

Designing Flexible Behaviors

Nov 14, 2011 Sprenkle - CSCI209 11

public class Duck {	
	 		
	public Duck() {	
	 	flyB = new FlyHighBehavior();	
	 	soundB = new QuackBehavior();	
	}	
		

	
} 	 Do we need to do anything else to this class,

with respect to fly and sound behavior? 	

How Do We Implement…

•  Hummingbird?
•  Penguin?
•  Ostrich?

Nov 14, 2011 Sprenkle - CSCI209 12

11/14/11

3

Class Diagram

Nov 14, 2011 Sprenkle - CSCI209 13

Bird	
FlyBehavior	

SoundBehavior	
performSound()	
performFly()	

	

Duck	

UML Diagram	

NoFly	
performFly()	

FlyBehavior	
performFly()	

FlyHigh	
performFly()	

SoundBehavior	
makeSound()	

interface	

(Implementations of interface …)	

interface	

asso
ciati

on	

Unified Modeling Language (UML)

•  Standardized general-purpose modeling
language
Ø Graphical language for visualizing, specifying

and constructing the artifacts of a software
system

•  Includes a set of graphical notation
techniques to create abstract models of
specific systems

•  Used in designing a large system
Ø Focus on big picture, not the code

Nov 14, 2011 Sprenkle - CSCI209 14

Design Principle:���
Favor Composition Over Inheritance	

•  Composition

Ø Using other objects in your class
Ø “Delegate” responsibilities to this object

Nov 14, 2011 Sprenkle - CSCI209 15

Why is composition preferred over inheritance?	

Design Principle:���
Favor Composition Over Inheritance	

•  Composition

Ø Using other objects in your class
Ø “Delegate” responsibilities to this object

Ø Inheritance à dependence on parent class

•  Only want to depend on things you know won’t
change (higher stability)

Ø Composition: Provide different behaviors for your
class by plugging in new object

Nov 14, 2011 Sprenkle - CSCI209 16

Why is composition preferred over inheritance?	

Another Solution: Using Interfaces

• We could have a Flyable interface with a
performFly() method and a
Chirpable interface with a chirp()
method

•  Then, each bird class would implement
Flyable and Chirpable, as appropriate

Nov 14, 2011 Sprenkle - CSCI209 17

Pros and cons of this solution?	

Pros and Cons of Interface Solution

• We could have a Flyable interface with a
performFly() method and a
Chirpable interface with a chirp()
method

•  Pros: Using an interface à more flexible
Ø Depending on interface instead of

implementation
•  Con: Duplicated code, implement in each

class

Nov 14, 2011 Sprenkle - CSCI209 18

11/14/11

4

Strategy Pattern

Nov 14, 2011 Sprenkle - CSCI209 19

Bird	
FlyBehavior	

SoundBehavior	
performSound()	
performFly()	

	

Duck	

UML Diagram	

NoFly	
performFly()	

FlyBehavior	
performFly()	

FlyHigh	
performFly()	

SoundBehavior	
makeSound()	

interface	

(Implementations of interface …)	

interface	

Strategies	

asso
ciati

on	

Design Pattern: Strategy

•  Defines a family of algorithms, encapsulates
each one, and makes them interchangeable

•  Lets algorithm/behavior vary independently
from clients that use it
Ø Allows behavior changes at runtime

•  Design Principle:

Nov 14, 2011 Sprenkle - CSCI209 20

Favor composition over inheritance	

What Are the Benefits of the Strategy
Pattern?

Nov 14, 2011 Sprenkle - CSCI209 21

What Are the Benefits of the Strategy
Pattern?
•  Uses delegation

Ø Reduces Bird’s responsibilities
•  Delegate some responsibilities to
SoundBehavior and FlyBehavior	

Ø Reduces Bird’s code
•  Easy swap of different strategy

Ø Because have one interface, can easily plug in
different behavior/implementation
•  Coding to interface, not implementation

Nov 14, 2011 Sprenkle - CSCI209 22

Pattern in its own right	

Discussion: Applying Design Patterns

• When should we apply the delegation
pattern?
Ø Example, if X, then we should apply the pattern.

• When should we apply the strategy pattern?

• When will we know we’ve gone too far
(overapplying)?
Ø What are some symptoms to look for?

Nov 14, 2011 Sprenkle - CSCI209 23

Discussion: Applying Design Patterns
•  When should we apply the delegation pattern?

Ø When we know that the requirements or implementations
for a responsibility are likely to change
•  Change: Number/types of birds; types of behaviors; or

lower-level implementation details
•  When should we apply the strategy pattern?

Ø When there are lots of desired behaviors for one
responsibility

•  When will we know we’ve gone too far
(overapplying)? What are some symptoms to look
for?
Ø  “Too small” classes à don’t do anything
Ø Have many more strategies than necessary
Ø  “Speculative generality”

Nov 14, 2011 Sprenkle - CSCI209 24

11/14/11

5

Design Pattern: Factory Methods

•  Allows creating objects without specifying
exact (concrete) class of created object

•  Often used to refer to any method whose
main purpose is creating objects

•  How it works:
1.  Define a method for creating objects
2.  Child classes override method to specify the

derived type of product that will be created

Nov 14, 2011 Sprenkle - CSCI209 25

Factory Method Pattern

Nov 14, 2011 Sprenkle - CSCI209 26

Product	 Creator	
factoryMethod()	
anOperation()	

ConcreteProduct	 ConcreteCreator	
factoryMethod()	

UML Class Diagram	

association	

interface	

 interface	

implementation	

implementation	

Mapping Factory Design Pattern
to Screen Savers
•  How does the screen saver application use

factory methods?

• What would be the alternative solution?

• What problems are the factories addressing?

Nov 14, 2011 Sprenkle - CSCI209 27

Mapping Factory Design Pattern
to Screen Savers
•  How does the screen saver application use

factory methods?
• What would be the alternative solution?
• What problems are the factories addressing?

Ø Delegate creation of concrete Movers
•  Likely to change
•  Encapsulate change in factory

Ø Using abstraction instead of specifying concrete
classes
•  Reduces dependencies to concrete classes

Nov 14, 2011 Sprenkle - CSCI209 28

Thoughts

•  Didn’t need to know design pattern to
understand code
Ø Helps to know the terminology to understand

the naming

•  Design principles all come down to
where there is change, use abstraction

Nov 14, 2011 Sprenkle - CSCI209 29

Dependency Inversion Principle

•  High-level components should not depend on
low-level components
Ø Both should depend on abstractions

•  Abstractions should not depend upon details.
Details should depend upon abstractions

•  “Inversion” from the way you think
•  Other techniques besides Factory Method for

adhering to principle
Nov 14, 2011 Sprenkle - CSCI209 30

Depend upon abstractions.
Do not depend upon concrete classes.

11/14/11

6

Dependency Inversion Principle

•  How would we build/design the screen saver
application?
Ø Know we need to view/display a screen saver

•  Buttons, slider, objects that move
•  Top-down

Ø Know we need to create a bunch of types of
screen savers
•  Abstraction
•  Bottom-up

Nov 14, 2011 Sprenkle - CSCI209 31

One Option for Screen Saver
Dependencies

Nov 14, 2011 Sprenkle - CSCI209 32

Bouncer	 Walker	

GUI	

Racer	

High-level component is dependent on concrete classes.	

If implementations change, GUI may have to change	

Our Screen Saver Dependencies

Nov 14, 2011 Sprenkle - CSCI209 33

Mover	 Canvas	 Factory	

Bouncer	 BouncerFactory	

ButtonPanel	

Screen Saver Dependencies

Nov 14, 2011 Sprenkle - CSCI209 34

Mover	 Canvas	 Factory	

Bouncer	 BouncerFactory	

ButtonPanel	

Note: dependencies
are on abstractions

and classes unlikely to
change 	

Guidelines to Follow DIP
•  No variable should hold a reference to a

concrete class
Ø Using new à holding reference to concrete class
Ø Use factory instead

•  No class should derive from a concrete class
Ø Why? Depends on a concrete class
Ø Derive from an interface or abstract class instead

•  No method should override an implemented
method of its base class
Ø Base class wasn’t an abstraction
Ø Those methods are meant to be shared by

subclasses

Nov 14, 2011 Sprenkle - CSCI209 35

What’s the problem with following ���
all of these guidelines? 	

Dependency Inversion Principle

Nov 14, 2011 Sprenkle - CSCI209 36

Depend upon
abstractions

11/14/11

7

To Do

•  Assign 11: Screensavers due Friday
•  Extra Credit: Naomi Oreskes talk, 5:30

Stackhouse
Ø Answer questions on Sakai

•  3 most important points of her talk
•  most surprising thing she mentioned
•  at least one question that you wondered during

the talk
•  one problem that she posed that a computer

scientist could help solve; tell me a little about
your proposed solution

 Nov 14, 2011 Sprenkle - CSCI209 37

