
10/23/09

1

•  Testing
•  Unit testing
•  JUnit Framework

 In Eclipse

•  Start Eclipse for later exercise

•  Describe and compare the two software
development models we discussed

•  How can we categorize prototypes?
 What are their characteristics?

•  Describe the general testing process
• What is a set of test cases called?

•  Test Suite: set of test cases

Input Program Actual
Output

Test Case Program
Under Test

Expected
Output ?

pass or fail

•  Black-box testing
 Test functionality (e.g., the

calculator)
 No knowledge of the code
 Examples of testing:

boundary values

•  White-box testing
 Have access to code
 Goal: execute all code

•  Non-functional testing
 Performance testing
 Usability testing (HCI)
 Security testing
  Internationalization,

localization

•  Acceptance testing
  If customer accepts the

product

•  Unit
 Tests minimal software component, in isolation
 For us, Class-level testing
 Web: Web pages (Http Request)

•  Integration
 Tests interfaces & interaction of classes

•  System
 Tests that completely integrated system meets

requirements
•  System Integration

 Test system works with other systems, e.g.,
third-party systems

10/23/09

2

•  Verify code works as intended in isolation
•  Find defects early in development

 Easier to test small pieces
 Less cost than at later stages

•  Unit
 Tests minimal software component, in isolation
 For us, Class-level testing
 Web: Web pages (Http Request)

•  Integration
 Tests interfaces & interaction of classes

•  System
 Tests that completely integrated system meets

requirements
•  System Integration

 Test system works with other systems, e.g.,
third-party systems

C
ost increases

•  Verify code works as intended in isolation
•  Find defects early in development

 Easier to test small pieces
 Less cost than at later stages

•  As application evolves, new code is more
likely to break existing code
 Suite of (small) test cases to run after code

changes
 Also called regression testing

•  Typical case
 Test typical values of input/parameters

•  Boundary conditions
 Test at boundaries of input/parameters
 Many bugs live “in corners”

•  Parameter validation
 Verify that parameter and object bounds are

documented and checked
 Example: pre-condition that parameter isn’t null

➥  All black-box testing approaches

•  A development style, evolved from Extreme
Programming

•  Idea: write tests first, without code bias
•  How it works:

 Write the tests that the code/new functionality
should pass
•  Like a specification for the code (pre/post

conditions)
•  All tests will initially fail

 Write the new code and make sure that it passes
all test cases

•  How should you test? How often?
 Code may change frequently
 Code may depend on others’ code
 A lot of code to validate

•  How do you know that an output is correct?
 Complex output
 Human judgment?

• What caused a code failure?

➥  Need a systematic, automated,
repeatable approach

10/23/09

3

•  Automatic
•  Thorough
•  Repeatable
•  Independent

Why would these be characteristics of
good (unit) testing?

•  Automatic
 Since unit testing is done frequently, don’t want humans

slowing the process down
 Running test cases
 Evaluating results
  Input: in test itself or from a file

•  Thorough
 Covers all code/functionality/cases

•  Repeatable
 Reproduce results (correct, failures)

•  Independent
 Test cases are independent from each other
 Easier to trace fault to code

•  A framework for unit testing Java programs
 Supported by Eclipse and other IDEs
 Developed by Erich Gamma and Kent Beck

•  Functionality
 Write tests

•  Validate output, automatically
 Automate execution of test suites
 Display pass/fail results of test execution

•  Stack trace where fails
 Organize tests, separate from code

•  But, you still need to come up with the tests!

•  Typical organization:
 Set of testing classes
 Testing classes packaged together in a tests

package
•  Separate package from code testing

•  A test class typically
 Focuses on a specific class
 Contains methods, each of which represents

another test of the class

tests	
CDTest	
DVDTest	
MediaItemTest	

1. Set up the test case (optional)
  Example: Creating objects

2. Exercise the code under test
3. Verify the correctness of the results
4. Teardown (optional)

 Example: reclaim created objects

10/23/09

4

•  Testing in JUnit 4: uses annotations
•  Provide data about a program that is not part of

program itself
•  Have no direct effect on operation of the code
•  Example uses:

 @Override: method declaration is intended to
override a method declaration in parent class
•  If method does not override parent class method,

compilers generates error message
  Information for the compiler to suppress warnings

(@SupressWarnings)

•  Mark your testing method with @Test	
 From org.junit.Test	

•  Convention: Method name describes what
you’re testing

public class CalculatorTest {	

	@Test	
	public void add() {	
	 	…	
	}	

}

A method to test the
“add” functionality

Class for testing the
Calculator class

•  Variety of assert methods available
•  If fail, throw an exception
•  All static void
•  Example:
 assertEquals(Object expected, Object actual)

@Test	
public void add() {	

	… 	
	assertEquals(4, calculator.add(3, 1));	

}

•  To use asserts, need static import:

 static allows us to not have to use classname	
•  More examples

 assertTrue(boolean condition)	
 assertSame(Object expected, Object actual)	

•  Refer to same object

@Test	
public void testEmptyCollection() {	
	Collection collection = new ArrayList();	

 assertTrue(collection.isEmpty());	
}

import static org.junit.Assert.*;	

•  May want methods to set up objects for
every test in the class
 Called fixtures
 If have multiple, no guarantees for order

executed
@Before	
public void prepareTestData() { ... }	

@Before	
public void setupMocks() { ... }	

@After	
public void cleanupTestData() { ... }

Executed before
each test method

•  May want methods to set up objects for set
of tests
 Executed once before any test in class executes

@BeforeClass	
public static void
setupDatabaseConnection() { ... }	

@AfterClass	
public static void
teardownDatabaseConnection() { ... }

10/23/09

5

•  Eclipse can help make our job easier
 Automatically execute tests (i.e., methods)
 We can focus on coming up with tests

•  In Eclipse, go to your MediaItems project
•  Create a new JUnit Test Case (under Java)

 Use JUnit 4
•  Add junit to build path

 Put in package media.tests	
 Name: DVDTest	
 Choose to test DVD class

•  Select setUp and tearDown	
•  Select methods to test

•  Run the class as a JUnit Test Case

•  Test method that gets the length of the DVD	
 Revise: Add code to setUp method that creates

a DVD

•  Notes
 Replaying all the test cases: right click on

package
 FastView vs Detached
 Hint: CTL-Spacebar to get auto-complete

options

•  Unit Testing: testing smallest component of
your code
 For us: class and its methods

•  JUnit provides framework to write test cases
and run test cases automatically
 Easy to run again after code changes

•  JUnit Resources available from Course
Page’s “Resource” Link, under Java
 API
 Tutorials

•  Due next Friday
•  Given: a Car class that only has enough

code to compile
•  Your job: Create a good set of test cases

that thoroughly/effectively test Car class
 Find faults in my faulty version of Car class
 Start: look at code, think about how to test, set

up JUnit tests
 Written analysis of process

