
10/19/11

1

Objectives

•  Testing
•  Unit testing
•  JUnit Framework

Ø In Eclipse

Oct 19, 2011 Sprenkle - CSCI209 1

"I don't think anybody tests enough of anything.” 	

From A Conversation with James Gosling	

Review

•  Start Eclipse for later exercise

•  Describe and compare the two software
development models we discussed
Ø Think of the model shapes

•  How can we categorize prototypes?
Ø What are their characteristics?

Oct 19, 2011 Sprenkle - CSCI209 2

Programming Language Popularity

Oct 19, 2011 Sprenkle - CSCI209 3

http://www.tiobe.com/index.php/content/paperinfo/tpci/	

http://langpop.com/	
.2 .4 .6 .8

Spiral Model Steps

•  Design a {method, class, package}
•  Implement the {method, class, package}
•  Test the {method, class, package}
•  Fix the {method, class, package}
•  Deploy the {method, class, package}
•  Get feedback

Ø Probably will require modifications to design
•  Repeat

Oct 17, 2011 Sprenkle - CSCI209 4

Design	

Implement	

Evaluate	

Prototypes	

SOFTWARE TESTING
PROCESS

Oct 19, 2011 Sprenkle - CSCI209 5

Why Test Programs?

•  Consider an online bookstore

Oct 19, 2011 Sprenkle - CSCI209 6

Bug!	

Customer 	

sees bug	

Site Goes Down	

for Maintenance	

Customers choose 	

a competitor’s site	

Lose customers’	

 confidence	

(a.k.a., a fault)	

10/19/11

2

Microsoft Testing

•  Beyond their internal testing …
Ø 5 million people beta tested
Ø 60+ years of performance testing
Ø 1 Billion+ Office 2007 sessions

•  Still, users found correctness, stability,
robustness, and security bugs

Oct 19, 2011 Sprenkle - CSCI209 7

Type 1 Bugs: Compile-Time

•  Syntax errors
Ø Missing semicolon, parentheses

•  Compiler notifies of error
•  Cheap, easy to fix

Oct 19, 2011 Sprenkle - CSCI209 8

Type 2 Bugs: Run-Time

•  Usually logic errors
•  Expensive to locate, fix

Oct 19, 2011 Sprenkle - CSCI209 9

Aside: Objections to “Bug” Terminology

•  “Bug”
Ø Sounds like it’s just an

annoyance
•  Can simply swat away

Ø Minimizes potential problems
Ø Hides programmer’s

responsibility
•  Alternative terms

Ø Defect
Ø Fault

Oct 19, 2011 Sprenkle - CSCI209 10

Software Testing Process

•  Test Suite: set of test cases

Oct 19, 2011 Sprenkle - CSCI209 11

Input Program Output

Test Case

Program
Under Test

Expected
Output ?

pass or fail

Software Testing Process

•  Tester plays devil’s advocate
Ø Hopes to reveal problems in the program

using “good” test cases
Ø Better tester finds than a customer!

Oct 19, 2011 Sprenkle - CSCI209 12

Input Program Output

How is testing different from debugging?	

10/19/11

3

How Would You Test a Calculator
Program?

• What test cases: input and expected output?

Oct 19, 2011 Sprenkle - CSCI209 13

Numerical
Answer

adds, subtracts,
multiplies, divides

Operands,
operators,
expected

output

Input Calculator
Program Output

Example Test Cases for Calculator
Program

•  Basic Functionality
Ø Addition
Ø Subtraction
Ø Multiplication
Ø Division
Ø Order of operations

•  Invalid Input
Ø  Letters, not-operation

characters (&,$, …)

•  “Tricky” Cases
Ø Divide by 0
Ø Negative Numbers
Ø  Long sequences of

operands, operators
Ø VERY large, VERY

small numbers

Oct 19, 2011 Sprenkle - CSCI209 14

Types of Testing

•  Black-box testing

•  White-box testing

•  Non-functional testing

•  Acceptance testing

Oct 19, 2011 Sprenkle - CSCI209 15

Ideas or definitions of any of these?	

Types of Testing

•  Black-box testing
Ø Test functionality (e.g., the

calculator)
Ø No knowledge of the code
Ø Examples of testing:

boundary values

•  White-box testing
Ø Have access to code
Ø Goal: execute all code

•  Non-functional testing
Ø Performance testing
Ø Usability testing (HCI)
Ø Security testing
Ø  Internationalization,

localization

•  Acceptance testing
Ø Customer tests to

decide if accepts
product

Oct 19, 2011 Sprenkle - CSCI209 16

Levels of Testing
•  Unit

Ø Tests minimal software component, in isolation
Ø For us, Class-level testing
Ø Web: Web pages (Http Request)

•  Integration
Ø Tests interfaces & interaction of classes

•  System
Ø Tests that completely integrated system meets

requirements
•  System Integration

Ø Test system works with other systems, e.g.,
third-party systems

Oct 19, 2011 Sprenkle - CSCI209 17

C
ost increases UNIT TESTING

Oct 19, 2011 Sprenkle - CSCI209 18

10/19/11

4

Why Unit Test?

•  Verify code works as intended in isolation
•  Find defects early in development

Ø Easier to test small pieces
Ø Less cost than at later stages

Oct 19, 2011 Sprenkle - CSCI209 19

Why Unit Test?

•  Verify code works as intended in isolation
•  Find defects early in development

Ø Easier to test small pieces
Ø Less cost than at later stages

•  As application evolves, new code is more
likely to break existing code
Ø Suite of (small) test cases to run after code

changes
Ø Also called regression testing

Oct 19, 2011 Sprenkle - CSCI209 20

Some Approaches to Testing Methods
•  Typical case

Ø Test typical values of input/parameters
•  Boundary conditions

Ø Test at boundaries of input/parameters
Ø Many bugs live “in corners”

•  Parameter validation
Ø Verify that parameter and object bounds are

documented and checked
Ø Example: pre-condition that parameter isn’t null

Oct 19, 2011 Sprenkle - CSCI209 21

➥  All black-box testing approaches	

Another Use of Unit Testing:
 Test-Driven Development

•  A development style, evolved from Extreme
Programming

•  Idea: write tests first without code bias
•  The Process:

1.  Write the tests that code/new functionality should
pass
•  Like a specification for the code (pre/post conditions)
•  All tests will initially fail

2.  Write the code and verify that it passes test cases
•  Know you’re done coding when you pass all tests

Oct 19, 2011 Sprenkle - CSCI209 22
What assumption does this make?	

How do you know you’re “done” in
traditional development?	

Software Testing Issues
•  How should you test? How often?

Ø Code may change frequently
Ø Code may depend on others’ code
Ø A lot of code to validate

•  How do you know that an output is correct?
Ø Complex output
Ø Human judgment?

• What caused a code failure?

Oct 19, 2011 Sprenkle - CSCI209 23

➥  Need a systematic, automated,
repeatable approach	

Characteristics of Good Unit Testing

•  Automatic
•  Thorough
•  Repeatable
•  Independent

Oct 19, 2011 Sprenkle - CSCI209 24

Why are these characteristics of	

good (unit) testing?	

10/19/11

5

Characteristics of Good Unit Testing
•  Automatic

Ø Since unit testing is done frequently, don’t want
humans slowing the process down

Ø Automate executing test cases and evaluating
results

Ø  Input: in test itself or from a file
•  Thorough

Ø Covers all code/functionality/cases
•  Repeatable

Ø Reproduce results (correct, failures)
•  Independent

Ø Test cases are independent from each other
Ø Easier to trace fault to code

Oct 19, 2011 Sprenkle - CSCI209 25

JUNIT

Oct 19, 2011 Sprenkle - CSCI209 26

JUnit Framework
•  A framework for unit testing Java

programs
Ø Supported by Eclipse and other IDEs
Ø Developed by Erich Gamma and Kent Beck

•  Functionality
Ø Write tests

•  Validate output, automatically
Ø Automate execution of test suites
Ø Display pass/fail results of test execution

•  Stack trace where fails
Ø Organize tests, separate from code

•  But, you still need to come up with the
tests!

Oct 19, 2011 Sprenkle - CSCI209 27

Kent Beck	

Erich Gamma	

Aside: Framework

Oct 19, 2011 Sprenkle - CSCI209 28

A framework is a basic conceptual structure
used to solve or address complex issues.	

	

This very broad definition has allowed the term
to be used as a buzzword, especially in a
software context.	

Testing with JUnit

•  Typical organization:
Ø Set of testing classes
Ø Testing classes packaged together in a tests

package
•  Separate package from code testing

•  A test class typically
Ø Focuses on a specific class
Ø Contains methods, each of which represents

another test of the class

Oct 19, 2011 Sprenkle - CSCI209 29

tests	
CDTest	
DVDTest	
MediaItemTest	

Structure of a JUnit Test

1. Set up the test case (optional)
Ø  Example: Creating objects

2. Exercise the code under test
3. Verify the correctness of the results
4. Teardown (optional)

Ø Example: reclaim created objects

Oct 19, 2011 Sprenkle - CSCI209 30

10/19/11

6

Annotations
•  Testing in JUnit 4: uses annotations
•  Provide data about a program that is not part of

program itself
•  Have no direct effect on operation of the code
•  Example uses:

Ø @Override: method declaration is intended to
override a method declaration in parent class
•  If method does not override parent class method,

compiler generates error message
Ø  Information for the compiler to suppress warnings

(@SupressWarnings)
 Oct 19, 2011 Sprenkle - CSCI209 31

Tests are Methods

•  Mark your testing method with @Test	
Ø From org.junit.Test	

•  Convention: Method name describes what
you’re testing

Oct 19, 2011 Sprenkle - CSCI209 32

public class CalculatorTest {	
	

	@Test	
	public void addTest() {	
	 	…	
	}	

}

A method to test the
“add” functionality	

Class for testing the
Calculator class	

Assert Methods

•  Variety of assert methods available
•  If fail, throw an exception
•  All static void
•  Example:
 assertEquals(Object expected, Object actual)

Oct 19, 2011 Sprenkle - CSCI209 33

@Test	
public void addTest() {	

	… 	
	assertEquals(4, calculator.add(3, 1));	

}

Assert Methods

•  To use asserts, need static import:

Ø static allows us to not have to use classname	
•  More examples

Ø assertTrue(boolean condition)	
Ø assertSame(Object expected, Object actual)	

•  Refer to same object
Ø assertEquals(double expected, double
actual, double delta)	

Oct 19, 2011 Sprenkle - CSCI209 34

import static org.junit.Assert.*;	

Example Uses of Assert Methods

Oct 19, 2011 Sprenkle - CSCI209 35

@Test	
public void testEmptyCollection() {	

	Collection collection = new ArrayList();	
 assertTrue(collection.isEmpty());	
}	
	
	
	
@Test	
public void testPI() {	

	final double ERROR_TOLERANCE = .01;	
	assertEquals(Math.PI, 3.14, ERROR_TOLERANCE);	

}	

Will fail if ERROR_TOLERANCE = .001

assertEquals(double expected, double actual, double delta)	

Set Up/Tear Down

•  May want methods to set up objects for
every test in the class
Ø Called fixtures
Ø If have multiple, no guarantees for order

executed

Oct 19, 2011 Sprenkle - CSCI209 36

@Before	
public void prepareTestData() { ... }	
	
@Before	
public void setupMocks() { ... }	
	
@After	
public void cleanupTestData() { ... }

Executed before
each test method	

10/19/11

7

Example Set Up Method

Oct 19, 2011 Sprenkle - CSCI209 37

@Before Executed before each test method	

Can use testCD in test methods	

private CD testCD;	
	
@Before	
public void setUp() {	

	testCD = new CD("CD title", 100, 1997, 	
	 	 	 	"CD Artist", 11);	

}

Expecting an Exception

•  Handling Error Cases
Ø Sometimes an exception is the expected result

Oct 19, 2011 Sprenkle - CSCI209 38

@Test(expected=IndexOutOfBoundsException.class)	
public void testIndexOutOfBoundsException() {	
 ArrayList emptyList = new ArrayList();	
 Object o = emptyList.get(0);	
}	

Add an “expected” attribute:

Test case passes iff exception thrown	

Set Up/Tear Down For Class

•  May want methods to set up objects for set
of tests
Ø Executed once before any test in class executes

Oct 19, 2011 Sprenkle - CSCI209 39

@BeforeClass	
public static void
setupDatabaseConnection() { ... }	
	
@AfterClass	
public static void
teardownDatabaseConnection() { ... }

JUNIT IN ECLIPSE

Oct 19, 2011 Sprenkle - CSCI209 40

Using JUnit in Eclipse

•  Eclipse can help make our job easier
Ø Automatically execute tests (i.e., methods)
Ø We can focus on coming up with tests

Oct 19, 2011 Sprenkle - CSCI209 41

Using JUnit in Eclipse

•  In Eclipse, go to your MediaItem project
•  Create a new JUnit Test Case (under Java)

Ø Use JUnit 4
•  Add junit to build path

Ø Put in package media.tests	
Ø Name: DVDTest	
Ø Choose to test DVD class

•  Select setUp and tearDown	
•  Select methods to test

•  Run the class as a JUnit Test Case
Oct 19, 2011 Sprenkle - CSCI209 42

10/19/11

8

Example

•  Test method that gets the length of the DVD	
Ø Revise: Add code to setUp method that creates

a DVD

•  Notes
Ø Replaying all the test cases: right click on

package
Ø FastView vs Detached
Ø Hint: CTL-Spacebar to get auto-complete

options
Oct 19, 2011 Sprenkle - CSCI209 43

Unit Testing & JUnit Summary

•  Unit Testing: testing smallest component of
your code
Ø For us: class and its methods

•  JUnit provides framework to write test cases
and run test cases automatically
Ø Easy to run again after code changes

•  JUnit Resources available from Course
Page’s “Resource” Link, under Java
Ø API
Ø Tutorials

Oct 19, 2011 Sprenkle - CSCI209 44

Project 1: Testing Practice

•  Due next Wednesday
•  Given: a Car class that only has enough

code to compile
•  Your job: Create a good set of test cases

that thoroughly/effectively test Car class
Ø Find faults in my faulty version of Car class
Ø Start: look at code, think about how to test, set

up JUnit tests
Ø Written analysis of process

Oct 19, 2011 Sprenkle - CSCI209 45

