
11/28/11

1

Objectives

•  SLogo Design
•  Discussion of Preparation Analyses

Nov 28, 2011 Sprenkle - CSCI209 1

Development Issues/Discussion

•  How can you identify issues in the
screensavers project?

•  Design principles still hold
Ø Use parent classes
Ø Don’t duplicate code

•  Ex: Location of random number generation
Ø Readability: naming, no magic numbers,

organization

Nov 28, 2011 Sprenkle - CSCI209 2

Review

•  How is a programming language processed?
Ø What are the different phases?

•  Start up Eclipse

Nov 28, 2011 Sprenkle - CSCI209 3

Review: Interpreting User’s Input

Nov 28, 2011 Sprenkle - CSCI209 4

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree	

Interpreter

User’s
Input

Token Token Tokens

OR

OR

Evaluation of
expression	

Draw on
canvas	

tokens	

parser	
expressions/instructions	

Tokenizer, TokenFactory	

Review: Practice Adding Instructions
1. Create a token for instruction

Ø Likely a subclass of token.ReservedToken	
Ø Same prefix as new instruction, e.g., IfToken.java	

2. Create a parser for the instruction with same
prefix as instruction, e.g., IfParser.java	
Ø Parsing class (presumably implementing Parser)

returns an instance of parsed Instruction
3. Create an instruction with prefix name, e.g.,

If.java	
4. Add instruction name to file

instructions.prop, e.g., add a single line to
file containing string If

Nov 28, 2011 Sprenkle - CSCI209 5

Consult examples	

PLANNING THE PROJECT

Nov 28, 2011 Sprenkle - CSCI209 6

11/28/11

2

Definition of Use Case?

•  Description of steps or actions between a
user and a software system towards some
goal

Nov 28, 2011 Sprenkle - CSCI209 7

What Steps Need To Be Completed?

•  By the Team

•  Process to figure out what needs to be
completed

Nov 28, 2011 Sprenkle - CSCI209 8

What Steps Need To Be Completed?
•  Model: Turtle

Ø API
Ø State

•  GUI
Ø Canvas – displays turtle
Ø Command interface
Ø  Listeners
Ø Multiple workspaces
Ø Turtle info displayed

(toggable)
Ø More options/buttons

(optional)
•  TESTING!

•  Parsing SLogo language
Ø Handle instructions
Ø Handle errors

appropriately

•  Evaluating expressions
Ø Manipulate turtle

appropriately

•  File handling
Ø Read file of SLogo files
Ø Save SLogo commands

Nov 28, 2011 Sprenkle - CSCI209 9

Dependencies?

Nov 28, 2011 Sprenkle - CSCI209 10

Dependencies

•  Interpreter classes (tokens, analyzer,
expression) are very dependent on each
other

•  Need to hook GUI to Interpreter
•  Need to hook Turtle to GUI and Interpreter

•  Can test without other pieces but easier and
more satisfying to see results displayed

Nov 28, 2011 Sprenkle - CSCI209 11

Effect of Extensions

•  Extensions could affect your code design
Ø Where could change à abstraction

•  Decision?
Ø May change your minds after start working on

the code
Ø Top vote getters

Nov 28, 2011 Sprenkle - CSCI209 12

11/28/11

3

Plan

•  Tasks/Steps
Ø Testing
Ø Think about iterative development

•  Monday deadline: FD 50 working at least

•  Division of tasks
Ø # of people per part

•  Deadlines

Nov 28, 2011 Sprenkle - CSCI209 13

Goals

•  Implement one instruction completely
Ø Involves a lot of different pieces

•  Don’t go too far in breadth, more depth
Ø See design issues sooner

•  “We need method/functionality X in class Y”

Nov 28, 2011 Sprenkle - CSCI209 14

Secondary Goals

•  You’re going to figure out that your design
isn’t perfect--maybe not even good!
Ø Fix smaller and/or more critical things

•  Refactoring!
Ø Note larger things

•  analysis/post-mortem due at end of finals week

Nov 28, 2011 Sprenkle - CSCI209 15

Good judgment comes from experience.
How do you get experience?

Bad judgment works every time.

SLogo Timeline

•  Monday, Dec 5: demo preliminary
functionality of application (group)

•  ??: final implementation due (group)
Ø Latest Fri, Dec 16

•  Fri, Dec 16: “Post-mortem” (individual)

Nov 28, 2011 Sprenkle - CSCI209 16

Exam Review

•  Discuss the design principles applied and
tradeoffs in how Sun designed the Java IO
classes.

•  Specifically, Java provides classes that
handle reading from/writing to sources (e.g.,
files, Strings, network), classes that take as
input other streams and filter those streams,
and convenience classes that combine
commonly used source and filter streams
together.

Nov 28, 2011 Sprenkle - CSCI209 17

Exam Feedback

•  Good:
Ø Design for change
Ø Comparing Java and Python

•  Not so good:
Ø JUnit properties
Ø Change à Abstraction
Ø Code smells à poor design
Ø When to stop testing

Nov 28, 2011 Sprenkle - CSCI209 18

Grade Score
A 85.5-95
B 76-85.5
C 66.5-76
D 57-66.5

82% median,
 average

