
11/18/09

1

•  Design Patterns • What is a design pattern?
• What design patterns did we discuss?

 What design principle does it follow?
• Why do we prefer composition over

inheritance?
• What design pattern is used in the screen

savers code?

•  Not a finished design that can be
transformed directly into code

•  Description or template for how to solve a
problem that can be used in many different
situations
 “Experience reuse”, rather than code reuse

General reusable solution to a commonly
occurring problem in software design

Bird	
FlyBehavior	

SoundBehavior	
performSound()	
performFly()	

Duck	

UML Diagram

NoFly	
performFly()	

FlyBehavior	
performFly()	

FlyHigh	
performFly()	

SoundBehavior	
makeSound()	

interface

(Implementations of
interface …)

interface

Strategies

association

•  Uses delegation
 Reduces Bird’s responsibilities

•  Delegated to SoundBehavior and FlyBehavior
 Reduces Bird’s code

•  Easy swap of different strategy
 Because have one interface, can easily plug in

different behavior/implementation
•  Coding to interface, not implementation

Pattern in its own right

11/18/09

2

• When should we apply the delegation
pattern?
 Example, if X, then we should apply the pattern.

• When should we apply the strategy pattern?

• When will we know we’ve gone too far
(overapplying)?
 What are some symptoms to look for?

•  When should we apply the delegation pattern?
 When we know that the requirements or implementations

for Flying and Sounds are likely to change
•  Change: Number/types of birds; types of behaviors; or

lower-level implementation details
•  When should we apply the strategy pattern?

 When there are lots of desired behaviors for one
responsbility

•  When will we know we’ve gone too far
(overapplying)? What are some symptoms to look
for?
  “Too small” classes  don’t do anything
 Have many more strategies than necessary
  “Speculative generality”

Product	 Creator	
factoryMethod()	
anOperation()	

ConcreteProduct	 ConcreteCreator	
factoryMethod()	

UML Class Diagram

association

•  How does the screen saver application use
factory methods?

• What would be the alternative solution?

• What problems are the factories addressing?

•  How does the screen saver application use
factory methods?

• What would be the alternative solution?
• What problems are the factories addressing?

 Delegate creation of concrete Movers
•  Likely to change
•  Encapsulate change in factory

 Using abstraction instead of specifying concrete
classes
•  Reduces dependencies to concrete classes

•  Compiler’s names of classes
 Anonymous class names
• ClassName$#.class	

 Look inside <workspace_dir>/ScreenSavers/
bin/screensaver/nomodify	

•  Don’t need to know design pattern to
understand code
 Helps to know the terminology to understand

the naming

11/18/09

3

•  High-level components should not depend on
low-level components
 Both should depend on abstractions

•  Abstractions should not depend upon details.
Details should depend upon abstractions

•  “Inversion” from the way you think
•  Other techniques besides Factory Method for

adhering to principle

Depend upon abstractions.
Do not depend upon concrete classes.

•  How would we build/design the screen saver
application?
 Know we need to view/display a screen saver

•  Buttons, slider, objects that move
•  Top-down

 Know we need to create a bunch of types of
screen savers
•  Abstraction
•  Bottom-up

Bouncer	 Walker	

GUI	

Racer	

High-level component is dependent on concrete classes.
If implementations change, GUI may have to change

Mover	 Canvas	 Factory	

Bouncer	 BouncerFactory	

ButtonPanel	

Mover	 Canvas	 Factory	

Bouncer	 BouncerFactory	

ButtonPanel	

Note: dependencies
are on abstractions
and classes unlikely

to change

•  No variable should hold a reference to a
concrete class
 Using new  holding reference to concrete class
 Use factory instead

•  No class should derive from a concrete class
 Why? Depends on a concrete class
 Derive from an interface or abstract class instead

•  No method should override an implemented
method of its base class
 Base class wasn’t an abstraction
 Those methods are meant to be shared by

subclasses
What’s the problem with following

all of these guidelines?

11/18/09

4

Depend upon
abstractions

•  Defines a 1-to-many dependency between
objects

• When one object changes state, all of its
dependents are notified and updated
automatically

Subject

Object that
holds state Dependent Objects

Automatic update/
notification Object

Object

Object

Ex: Publisher Ex: Subscribers

Subject	
registerObserver()	
removeObserver()	
notifyObservers()	

Observer	
update()	

ConcreteSubject	
registerObserver()	
removeObserver()	
notifyObservers()	
getState()	
setState()	

ConcreteObserver	
update()	
//observer-specific	
//methods	

Have we seen this pattern?

•  A principle behind Observer pattern

•  Loosely coupled objects can interact but
have very little knowledge of each other
 Minimize dependency between objects
 More flexible systems
 Handle change

Strive for loosely coupled designs
between objects that interact

•  A common design pattern for GUIs
•  Separate

 Model: application data
 View: graphical representation
 Controller: input processing

Model Controller View
Notifies Modifies

•  Can have multiple viewers and controllers
•  Goal: modify one component without

affecting others

Model Controller View
Notifies Modifies

Model	 View	

Controller	

Direct associations

11/18/09

5

•  Code that carries out some task
•  Nothing about how view presented to user
•  Purely functional
•  Must be able to register views and notify

views of changes

Model

•  Provides GUI interface
components of model
 Look & Feel of the application

•  User manipulates view
 Informs controller of change

•  Example of multiple views:
spreadsheet data
 Rows/columns in spreadsheet
 Pie chart, bar chart, …

View
View

View

•  Takes user input and figures out what it
means to the model
 Makes decisions about behavior of model based

on UI
•  Update model as user interacts with view

 Calls model’s mutator methods
•  Views are associated with controllers

Controller Controller Controller

View Controller

Model

User •  Use interface
•  Actions go to controller

Controller
manipulates

model
class Player	

play()	
rip()	

export()	

Display is updated

“Play new song”

Controller asks Player model
to begin playing song

Model tells
view that state
has changed

• See the song display
update

• Hear new song
playing

Contains state, data,
application logic

•  Observer
 Views, Controller notified of Model’s state changes

•  Strategy
 View can plug in different controllers
 View does not know how model gets updated

•  Composite
 View is a composite of GUI components
 Top-level component learns about update, updates

components

11/18/09

6

•  Consider GUIs we’ve seen
 Which use the MVC pattern?

•  Identify M, V, and C in applicable GUIs

•  Good:
 JUnit properties
 Inner classes
 Layout Managers
 Comparing Java and Python

•  Not so good:
 Change  Abstraction
 Code smells  poor design
 Collection framework  interfaces,

implementations, algorithms

Grade Score
A 74-83
B 66-73
C 58-65

