Objectives

Wrap-up Language Comparison
Software Development

Oct 21, 2009 Sprenkle - CS209 1

Review

Why do we need Comparators?
What is the benefit of using jar files?

How do we create a jar file? Extract the
contents of a jar file?

What are the 3 preconnected streams?
How do we access them in Java?

Oct 21, 2009 Sprenkle - CS209 2

Python Interpreter
Validates Python programming language
expression(s)
Enforces Python syntax rules
Reports syntax errors
Executes expression(s)

Java Compiler

Java Compiler Java
file . (avaq) class
Source code Executable code

Lexical analysis, parsing, semantic analysis,
code generation, and code optimization
Code optimization: dead code eliminator,
inline expansion, constant propagation, ...

Python
expression fe——v I?SE?:;"
7 Only if no

‘/\ syntax

Output Executable errors
bytecode
Oct 21, 2009 Sprenkle - CS209 3
Compiling

Translates high-level programming language to
machine code or byte code
Java: .class - bytecode
Compiler optimization techniques
Generate efficient bytecode/machine code
Examples: get rid of unused local variables, transform
loops
In Java: static typing for additional gains
Can execute generated code multiple times
Performance gain

Interpreted - have to re-verify the code each time
executed

What can we do in Python that we can’t do in Java?

Oct 21, 2009 Sprenkle - CS209 5

Oct 21, 2009 Sprenkle - CS209 4
Summary:
Compiled vs Interpreted Languages
Compiled Interpreted
Spends a lot of time v Relatively little time spent
analyzing and processing analyzing and processing
the program the program

Resulting executable is
some form of machine-
specific binary code
Computer hardware
interprets (executes)

Resulting code is some
sort of intermediate code
Another program
interprets resulting code

resulting code Program execution is
v Program execution is fast relatively slow
Efficient machine/byte code v’ Faster development/
generation prototyping

Performance gains

Oct 21, 2009 Sprenkle - CS209 6

Language Comparison

Java Python
Object-oriented
Statically typed
Compiled

Object-oriented
Dynamically typed
Interpreted

Pros and cons of using each?

Oct 21, 2009 Sprenkle - CS209

SOFTWARE LIFE CYCLE

Oct 21, 2009 Sprenkle - CS209 8

Traditional Software Engineering
Process: Waterfall Model

Implementation
Integration

Validate at each step
Goal: A stage is 100%
complete before moving
to next step

Oct 21, 2009 Sprenkle - CS209

Release/
Maintenance

Feedback in Waterfall Model

Requirements

* Problems may be
revealed in later stages

» What happens if
problems aren’t revealed
until Acceptance?

\
\

Release/
Maintenance

Oct 21, 2009 Sprenkle - CS209 10

Iterative Design

Design
Get feedback
from users/
clients
Evaluate Implement
Oct 21, 2009 Sprenkle - CS209

Spiral Model

Design

Idea: smaller prototypes
to test/fix/throw away

» Finding problems early
costs less

In general...

» Break functionality into
smaller pieces

» Implement most
depended-on or highest-
priority features first

Evaluate

Implement

Radial dimension: cost
[Boehm 86]

Oct 21, 2009 Sprenkle - CS209 12

Prototypes

Purpose/Dimensions

» Functionality : |
orizontal

> Interaction frent end pratotype
; rtical -
> Implementation ! p‘::m';;e scenario
back end [
Fldellty i different features
» Low: omits details From Nielsen,

» High: closer to finished project Usability Engineering
» Multi-dimensional

Breadth: % of features covered

» Only enough features for certain tasks

Depth: degree of functionality

» Limited choices, canned responses, no error handling

Oct 21, 2009 Sprenkle - CS209 13

CONSUMER ISSUES STORYBOARD PAGE 3
RN

Low Fidelity

Media: Paper

Examples:
storyboard,
sketches, flipbook,
flow diagram

Oct 21, 2009 Sprenkle - CS209 14

High Fidelity

Media: Flash, HTML (non-interactive),
PowerPoint, Video

Examples: Mockups, Wizard of Oz

Virtual Peer for
Autistic Children

http://articulab.northwestern.edu/projects/samautism/ 15

Spiral Model Steps

Design a {method, class, package}
Implement the {method, class, package}
Test the {method, class, package}

Fix the {method, class, package}

Deploy the {method, class, package}
Get feedback

» Probably will require modifications to design

Repeat

Oct 21, 2009 Sprenkle - CS209 16

SOFTWARE TESTING
PROCESS

Oct 21, 2009 Sprenkle - CS209 17

Why Test Programs?

Consider an online bookstore

: - Customer Site Goes Down
= BUQ!/ - _I” seesbu for Maintenance
-V
(a.k.a., a fault) l

A

Lose customers’
confidence

Customers choose
a competitor’s site

Oct 21, 2009 Sprenkle - CS209 18

Microsoft & ¥ Windows Vista Testing

Beyond their internal testing ...

» 5 million people beta tested

» 60+ years of performance testing

~ 1 Billion+ Office 2007 sessions

Still, users found correctness, stability,
robustness, and security bugs

Oct 21, 2009 Sprenkle - CS209 19

Type 1 Bugs: Compile-Time

Syntax errors

» Missing semicolon, parentheses
Compiler notifies of error
Cheap, easy to fix

Oct 21, 2009 Sprenkle - CS209 20

Type 2 Bugs: Run-Time

Usually logic errors
Expensive to locate, fix

Oct 21, 2009 Sprenkle - CS209 21

Aside: Objections to “Bug” Terminology

Ny

“Bug’”
» Sounds like it’s just an
annoyance
Can simply swat away
» Minimizes potential problems
» Hides programmer’s
responsibility
Alternative terms
» Defect
» Fault

Oct 21, 2009 Sprenkle - CS209 22

Software Testing Process

Test Case Program

Under Test

w4

Test Suite: set of test cases

Oct 21, 2009 Sprenkle - CS209 23

Software Testing Process

Test Case

Tester plays devil's advocate

» Hopes to reveal problems in the program
using “good” test cases

» Better tester finds than a customer!
How is testing different from debugging?

Oct 21, 2009 Sprenkle - CS209 24

How Would You Test a Calculator
Program?

estce | — 1

Operands, adds, subtracts, Numerical
operators multiplies, divides Answer

What test cases/input?

Oct 21, 2009 Sprenkle - CS209 25

Example Test Cases for Calculator
Program

Basic Functionality “Tricky” Cases

» Addition » Divide by 0

» Subtraction » Negative Numbers
» Multiplication » Long sequences of
> Division operands, operators

» VERY large, VERY

» Order of operations
small numbers

Invalid Input

» Letters, not-operation
characters (&,9, ...)

Oct 21, 2009 Sprenkle - CS209 26

