
12/7/09

1

•  Picasso Design
 Finish parsing commands

•  Collaborating with Subversion
•  Discussion of Preparation Analyses

•  How is a programming language processed?
 What are the different phases?

•  Start up Eclipse

Lexical
Analyzer

Semantic
Analyzer

Error

Error

Expression
Tree

Interpreter

User’s
Input

Token Token Tokens

OR

OR

Evaluation of
expression

Draw on
canvas

1. Create a token for the sine function
 Same prefix as new function, e.g., SinToken.java	
 sin needs to be added to functions.conf	

2. Create a semantic analyzer for the function
with same prefix as function, e.g.,
SinAnalyzer.java	
  Implements SemanticAnalyzerInterface,
generateExpressionTree returns an instance
of ExpressionTreeNode	

3. Create an ExpressionTreeNode for
function Sine.java	
  How should the "evaluate" method be

implemented?

•  How would you handle perlinColor
(expr,expr) ?

•  How would you handle addition?

Goal: easily updated,
extendible code

12/7/09

2

Design

Evaluate Implement

Creating many
prototypes

- What if don’t like
recent prototype?

Need to go back to
older version

•  Different parts (e.g., user
interface and backend)

•  > 1 developer
implementing concurrently

- What if one introduces
a bug?

Developers •  Backup and Restore
 Files are saved as they are edited
 Revert to a specific version/checkpoint

•  Synchronization
  Lets people share files
 Stay up-to-date with the latest version

•  Track changes to code
 Save comments explaining why change happened
 Stored in the VCS, not the file
 Track how, why a file evolves over time

•  Track Ownership
 Tags every change with the name of the person who

made it

•  Short-term undo
 Messed up a file? Go back to the last good version

•  Long-term undo
 Created a bug a year ago? Jump back to see

change you made.
•  Sandboxing

 Making a big change? Make temporary changes in
isolated area, test, work out kinks before “checking
in” your changes

•  Branching and merging
 Branch a copy of your code into a separate area,

modify it in isolation (tracking changes separately)
 Later, merge work into common area

•  Popular Version Control Systems
•  Subversion is newer, more flexible
•  Terms used are common for most version

control systems

•  Example uses Subversion
 Similar to CVS

Repository

•  Keeps public copy of code:
versions of all files,
comments about changes,
who made changes

•  Have own copy of code
“Working Copy”

•  Checkout, commit,
update code

Users

Code

Code

•  To start, need to checkout your working
copy of the code

Repository

checkout	
Code

Code
Current

version of all
current files

12/7/09

3

•  After you make changes that you want others
to see, commit your version
 Include comments about what changes you

made and why

Repository

•  Checks for conflicts
•  Updates each modified file
•  Records comments with

updated files

commit	

Code* comments?
comments

Code

•  After you make changes that you want others
to see, commit your version
 Include comments about what changes you

made and why

Repository

•  Checks for conflicts
•  Updates each modified file
•  Records comments with

updated files

commit	

Code* comments?
comments

Code

Code’

Other people’s code
doesn’t change

•  After you make changes that you want others
to see, commit your version

Repository

•  Checks for conflicts -- code
conflicts with recent
changes in the public copy

commit	
Code*

conflicts
Code*

•  Update code, fix
conflicts

•  Try commit again

•  To see the current version of the code,
update your repository
 Resolve conflicts

Repository
update	

Code
code

•  You need to add and delete files and
directories to the repository, then commit	

Repository
commit	

Code

•  Add, delete files
and directories

•  Commit

•  Create new records for added files
•  Close records for deleted files

•  Files not deleted from repository

•  Does not eliminate need for communication
 Process becomes much more difficult if

developers do not communicate
•  Before picking up again, update your

working copy
•  Commit only after you’ve tested code and

you’re fairly sure it works
 Write descriptive comments so your team

members know what you did and why

12/7/09

4

•  Organize code into appropriate structure

MyProject	

branches	 tags	 trunk	

dir	 file	

Main line of
development

Named snapshots
of code

Active variations of
the trunk

•  Plugin for Eclipse
•  Installation:

 Help  Install New Software
 Create remote site:

•  Name: Subclipse
• http://subclipse.tigris.org/
update_1.6.x	
 Select all those packages

•  Create a new SVN Repository:
 File  New  Other  SVN
 Repository:
file:///home/courses/cs209/shared/svn/
Picasso/trunk	

  If you want to connect from your home computer:
svn+ssh://knuth.cs.wlu.edu/home/courses/
cs209/shared/svn/Picasso/trunk	

•  Checkout from repository
 As a new project (Wizard)
 Java project, named Picasso

•  If many compiler errors in src/tests, may
need to add JUnit to classpath
 Configure Build Path
 Libraries, Add Library

•  Junit 4

•  Named: your name
•  Put some text into it
•  Add the file to the Repository:

 Right-click on the file you created  Team  Add
•  Commit your file (Save for group to see)

 Right-click on top-level directory/project  Team 
Commit

 Add an appropriate comment
•  Update your repository (Get latest working version)

 Right-click on top-level directory/project  Team
Update

 Do you have any one else’s files?

12/7/09

5

•  GUI
 Command interface
 More options/buttons

(optional)
  Listeners
  Improve GUI

•  TESTING!

•  Parsing Picasso
language
 Handle functions,

arithmetic operators
 Handling image

functions
 Handling assignment

statements
 Handle errors

appropriately
•  Evaluating expressions

•  Parsing classes (tokens, analyzer,
expression) are very dependent on each
other

•  Need to hook GUI to Parser
•  Can test without other pieces but easier and

more satisfying to see results displayed

•  Extensions could affect your code design
 Where could change --> abstraction

•  Decision?
 May change your minds after start working on

the code
 Top vote getters

12/7/09

6

•  Tasks/Steps
 Testing
 Think about iterative development

•  Monday deadline: basic functionality of all parts

•  Division of tasks
 # of people per part

•  Deadlines

•  Implement a version of application
 Iterative development

•  Don’t go too far in depth, more breadth
 See design issues sooner

•  “We need method/functionality X in class Y”

•  You’re going to figure out that your design
isn’t perfect--maybe not even good!
 Could be partially fault of given code
 Fix smaller things

•  Refactoring!
 Note larger things (analysis/post-mortem due at

end of finals week)

Good judgment comes from experience.
How do you get experience?

Bad judgment works every time.

•  Monday, Dec 7: demo application (group)

•  ??: final implementation due (group)
•  Fri, Dec 18: “Post-mortem” (individual)

What should be the goal for Monday?

•  On Sakai forum for class, answer the following
questions about the talk (also on the forum):
 What is the main problem she is trying to solve?
 What is her approach(es) to the problem?
 How did she evaluate her approach(es)?
 Are there any limitations to her approach? (i.e., will her

approach always work?)
 Do you have any ideas for future work, e.g., how to

extend her approach or what other questions you'd like
to know the answers to?

 What did you find most interesting about the work?
 How did the talk/research relate to the class, if at all?

•  Due on Monday

