
11/17/09

1

•  Animation
•  Design Patterns

•  How easy/difficult to refactor for extensibility?
• Was it easier to add to your refactored code?

 What would your refactored classes have looked
like if I hadn’t told you that you were going to add
the three other bets?

•  How easy/difficult was it to test your classes?

• What object do we use to “draw” in Java?
 What are some things we can do?

•  Bouncers (package bouncers)
 What does each class do?
 How does it draw?
 How does it animate?

Import project:
/home/courses/cs209/handouts/screensavers.tar	

•  Not a finished design that can be
transformed directly into code

•  Description or template for how to solve a
problem that can be used in many different
situations
 “Experience reuse”, rather than code reuse

General reusable solution to a commonly
occurring problem in software design

11/17/09

2

•  Software best practices
•  Catalogued and discussed in Design

Patterns: Elements of Reusable Object-
Oriented Software
 Written by the “Gang of Four”: Erich Gamma,

Richard Helm, Ralph Johnson and John
Vlissides

 Erich Gamma also co-wrote JUnit framework

1. Recognize problem as one that can be
solved by a design pattern

2. Apply pattern to your problem

Danger: over-applying design patterns
  Fall back: Identify and resolve code smells

•  Birds
 Various flying behaviors (some fly, some don’t)
 Make different sounds
 Examples: Duck, Penguin, Hummingbird,

Ostrich, Chicken, Oriole, …

How can we represent
different birds?

•  Include behaviors in abstract Bird class
 FlyBehavior object has performFly()

method
 SoundBehavior object has makeSound()

method

•  Could have setter methods in Bird class to
change these
 Example: bird gets wings clipped

public abstract class Bird {	
	protected FlyBehavior flyB;	
	protected SoundBehavior soundB;	

	public Bird() {	
	 	…	
	}	

	public void performSound() {	
	 	soundB.makeSound();	
	}	

	public void performFly() {	
	 	flyB.performFly();	
	} 	

} 	

public class Duck {	
	//Recall: protected FlyBehavior flyB;	
	//Recall: protected SoundBehavior soundB;	

	public Duck() {	

	}	
	…	

} 	

What do we need to
do in here?

11/17/09

3

public class Duck {	
	 		
	public Duck() {	
	 	flyB = new FlyHighBehavior();	
	 	soundB = new QuackBehavior();	
	}	

} 	 Do we need to do anything else to this class,
with respect to fly and sound behavior?

•  Hummingbird?
•  Penguin?
•  Ostrich?

Bird	
FlyBehavior	

SoundBehavior	
performSound()	
performFly()	

Duck	

UML Diagram

NoFly	
performFly()	

FlyBehavior	
performFly()	

FlyHigh	
performFly()	

SoundBehavior	
makeSound()	

interface

(Implementations of
interface …)

interface

association

•  Composition
 Using other objects in your class
 “Delegate” responsibilities to this object

 Composition: Provide different behaviors for your
class by plugging in new object

 Inheritance  dependence on parent class
•  Only want to depend on things you know won’t

change (higher stability)

Why is composition preferred over inheritance?

• We could have a Flyable with a
performFly() method and a
Chirpable interface with a chirp()
method

Pros and cons of this solution?

• We could have a Flyable with a
performFly() method and a
Chirpable interface with a chirp()
method

•  Pros: Using an interface  more flexible
 Depending on interface instead of

implementation
•  Con: Duplicated code, implement in each

class

11/17/09

4

Bird	
FlyBehavior	

SoundBehavior	
performSound()	
performFly()	

Duck	

UML Diagram

NoFly	
performFly()	

FlyBehavior	
performFly()	

FlyHigh	
performFly()	

SoundBehavior	
makeSound()	

interface

(Implementations of
interface …)

interface

Strategies

association

•  Defines a family of algorithms, encapsulates
each one, and makes them interchangeable

•  Lets algorithm/behavior vary independently
from clients that use it
 Allows behavior changes at runtime

•  Design Principle:

Favor composition
over inheritance

•  Allows you to create objects without
specifying exact (concrete) class of created
object

•  How it works:
1.  Define a method for creating objects
2.  Child classes override method to specify the

derived type of product that will be created
•  Often used to refer to any method whose

main purpose is creating objects

Product	 Creator	
factoryMethod()	
anOperation()	

ConcreteProduct	 ConcreteCreator	
factoryMethod()	

UML Class Diagram

association

•  In Eclipse, import an existing project:
/home/courses/cs209/handouts/
screensavers.tar	

•  Run Main class
•  Answer questions about code

 What represents an object in the screen saver?
 How generates screen saver objects?
 How handles animation?
 How handles events?

11/17/09

5

•  How does the screen saver application use
factory methods?

• What would be the alternative solution?

• What problems are the factories addressing?

•  How does the screen saver application use
factory methods?

• What would be the alternative solution?
• What problems are the factories addressing?

 Delegate creation of concrete Movers
•  Likely to change
•  Encapsulate change in factory

 Using abstraction instead of specifying concrete
classes
•  Reduces dependencies to concrete classes

•  Anonymous class names
 ClassName$#.class	

•  Look inside <workspace_dir>/
ScreenSavers/bin/screensaver/nomodify	

•  Complete screen savers for
 Racers
 Random Walkers
 “Interesting” circles

•  Due Friday

