
10/30/09

1

•  Open-Closed Principle
•  Code Smells
•  Refactoring

• What were the difficult parts of Project 1?
•  Did they get any easier?
•  Did you develop a system or any techniques

to make the process easier?
•  In the future, how could you make the

process easier?
• What do you think of JUnit in Eclipse?

Don’t forget what you’ve learned.
Integrate testing into your development.

• What is guaranteed in software
development?

• What are some principles of design in
Object-oriented Programming to address the
challenge posed by that guarantee?

• What is the underlying theme of how to
achieve those principles?

•  (DRY): Don’t repeat yourself
•  Single responsibility principle
•  Shy

 Avoid Coupling
•  Tell, Don’t Ask
•  Open-closed principle
•  Avoid code smells

•  Bertrand Meyer
 Author of Object-Oriented Software Construction

•  Foundational text of OO programming

•  Design modules that never change (after
completely implemented)

•  If requirements change, extend behavior by
adding code
 Don’t change existing code  won’t create bugs!

Principle: Software entities (classes, modules,
methods, etc.) should be open for extension

but closed for modification

•  Open for Extension
 Behavior of module can be extended
 Make module behave in new and different ways

•  Closed for Modification
 No one can make changes to module

These attributes seem to be at odds with each other.
How can we resolve them?

10/30/09

2

•  Abstract base classes
 Fixed abstraction  API
 Cannot be changed

•  Derived classes: possible behaviors
 Can always create new child classes of abstract

base class

• Client uses Server class

Client	 Server	

public class Client {	
	public void method(Server x) {	
	…	
	}	

}	

• Client uses AbstractServer class

Client	 Abstract	
Server	

public class Client {	
	public void method(AbstractServer x) {	
	…	
	}	

}	

Server	

extends Server2	

•  No significant program can be completely
closed

•  Must choose kinds of changes to close
 Requires knowledge of users, probability of

changes
 Most probable changes should be closed

•  Member variables are private
 A method that depends on a variable cannot be

closed to changes to that variable
 The class itself can’t be closed to it

•  All other classes should be
•  No global variables

 Every module that depends on global variable
cannot be closed to changes to that variable

 What happens if someone uses variable in
unexpected way?

 Counter examples: System.out, System.in	
➥ Apply abstraction to parts you

think are going to change

•  Duplicated code
•  Long method
•  Large class
•  Long parameter list
•  Very similar subclasses
•  Too many public

variables
•  Empty catch clauses

•  Switch statements/long
if statements

•  Shotgun surgery
•  Literals
•  Global variables
•  Side effects
•  Using instanceof	

A hint in the code that something
could be designed better

10/30/09

3

• What’s the problem with duplicated code?

• Why do we like it?
 What made us write the duplicated code?

What can we do when we have duplicated code?
(How can we get rid of the duplicate code?)

•  Example: same expression in 2 methods of
the same class
 Solution: Extract method
 Call method from those two places

•  Example: duplicated code in 2 sibling
subclasses

Parent

Sib1 Sib2

•  Example: duplicated code in 2 sibling
subclasses
 Extract method, put into parent class
 If similar but not duplicate, extract the duplicate

code (or parameterize)

•  Example: duplicated code in unrelated
classes

•  Example: duplicated code in unrelated
classes
 Ask: where does method belong?
 One solution:

•  Extract class
•  Use new class in classes

 Another solution:
•  Keep in one class
•  Other class calls that method

•  Example
 Creating a single function that replaces 2 or

more sections of similar code
•  Reduces redundant code
•  Makes code easier to debug, test

After refactoring your code, what should you do next?

Refactoring: Updating a program to improve its
design and maintainability without changing its

current functionality significantly

• What’s the problem with long methods?
• What made us write them?

10/30/09

4

•  Issues:
 Hard to understand (see) what method does
 Smaller methods have reader overhead

•  Look at code for called methods
•  But, should use descriptive names

•  Solutions:
 Find lines of code that go together (may be

identified by a comment) and extract method

• What’s the problem?

•  Issue: Too many instance variables  trying
to do too much (Single Responsibility)

•  Solutions:
 Bundle groups of variables together into another

class
•  Look for common prefixes or suffixes

 If includes optional instance variables (only
sometimes used), create child classes

 Look at how users use the class for ideas of how
to break it up

Eclipse: Refactor  Extract Class or
Extract Superclass

•  More difficult to use (do I have everything?)
•  If method signature changes, have a lot of

places to change
•  Solutions: Use objects

 Instead of separate parameters for an object’s
data

 Group parameters together

Eclipse: Refactor  Introduce Parameter Object
OR Refactor  Change Method Signature

•  Classic CS problem: fit as many of
something (A) into as few (B) as possible

•  Example
 A: Files, which have a size
 B: CDs or DVDs (Disks)

File File File

• Worst fit
 Store file in disk with most free space

•  In-order worst fit
 Put files on disk, in order seen

•  In-decreasing-order worst fit
 Sort files by size
 Put on disks

10/30/09

5

•  Keep the disks in sorted order by their free
space
 Java class: PriorityQueue	

•  Uses compareTo method or Comparator	

•  Import  General  Existing project into
Workspace
 Archive file: /home/courses/cs209/handouts/

bins.tar
•  Try running Bin.java

 Run options
 Argument: data/example.txt

Looking at the main method on the handout…
•  How clearly written is the code?
• What, if any, comments might be helpful

within the code?
•  Does it satisfy its role as a tutorial?
• What, if any, suggestions does this code

make about how the remaining parts of the
assignment will be written?

•  How would you test this code for bugs?

•  Given: a problem specification and a solution to
the problem
 You refactoring your own code is emotional
 More objective with someone else’s solution

•  Goals
 Read and understand someone else’s code

•  Haven’t done much of this in Java
 Critique code (do you smell something?)

•  Identify, articulate problems
 Refactor code to solve problems identified
 Write tests to verify the code

