Objectives

Exceptions

Sept 30, 2009 Sprenkle - CS209 1

Review

How do we specify that a class or a method
cannot be subclassed/overridden?

Compare and contrast abstract classes and
interfaces

When should a class be abstract?
When should you create/use an interface?

What is the keyword for defining your class to
implement an interface?

Analysis of equals methods

public boolean equals(Object o){
if(((Birthday) o).getDate() != this.getDate())
return false;

if(((Birthday) o).getMonth() != this.getMonth())
return false;
return true;

}

public boolean equals(Object o) {
Birthday other = (Birthday) o;
if (this.month == other.month && this.day ==
other.day)
return true;
else
return false;

Sept 30, 2009 Sprenkle - CS209 3

Sept 30, 2009 Sprenkle - CS209 2
Sept 30, 2009 Sprenkle - CS209 4

Errors

Programs encounter errors when they run
Users may enter data in the wrong form
Files may not exist
Printers run out of paper in the middle of printing
Program code has bugs
When an error occurs, a program should do
one of two things:
Revert to a stable state and continue
Allow the user to save data and then exit the
program gracefully

Sept 30, 2009 Sprenkle - CS209 5

Java Method Behavior

Normal/correct case: return specified return
type
Error case: does not return anything, throws
an Exception

An exception is an event, which occurs during

the execution of a program, that disrupts the
normal flow of the program's instructions.

Exception: object that encapsulates the error
information

Sept 30, 2009 Sprenkle - CS209 6

Handling Exceptions

JVM'’s exception-handling mechanism searches for
an exception handler—the error recovery code
Exception handler deals with a particular exception

Searches call stack for a method that can handle (or
catch) the exception

Method where
error occurred

Method call

Method without an
exception handler
Method call
Method with an
exception handler

Method call
main

Sept 30, 2009 Sprenkle - CS209 7

Call stack

OXORORS)

Throwable

All exceptions indirectly derive from
Throwable
Child classes: Error and Exception
Important Throwable methods
getMessage()
Detailed message about error
printStackTrace()

Prints out where problem occurred and path to
reach that point

getStackTrace()
Get the stack in non-text format

Sept 30, 2009 Sprenkle - CS209 8

Stack Trace Example

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

How helpful is this output?
How user friendly is it?

Sept 30, 2009 Sprenkle - CS209 9

Stack Trace Example

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

How helpful is this output?
How user friendly is it?

« Useful for debugging your code

» Generate/display user-friendly errors in finished
product

» Often requires “higher-level code” to handle exception

Sept 30, 2009 Sprenkle - CS209 10

Exception Classification

Throwable

SQLException

Sept 30, 2009 Sprenkle - CS209 "

Exception Classification: Error

An internal error

Strong convention: reserved for JVM

JVM-generated when resource exhaustion or an
internal problem

Example: Out of Memory error (When can that
happen in Java?)

Program’s code should not and can not throw
an object of this type
Unchecked exception

Sept 30, 2009 Sprenkle - CS209 12

Exception Classifications

RuntimeException something that

happens because of a programming error
Unchecked exception
Examples: ArrayOutOfBoundsException,
NullPointerException,
ClassCastException

Checked exceptions

A well-written application should anticipate and
recover from
e.g., I0OException, SQLException

Sept 30, 2009 Sprenkle - CS209 13

Exception Classifications

If something is programmer’s fault >
RuntimeException

Otherwise, an Error or another Exception

Common checked exception: I0Exception
Trying to read past the end of a file
Trying to open a bad URL
File not found

Sept 30, 2009 Sprenkle - CS209 14

Part of java.lang
package

Exception Classification

Checked: All non-

RuntimeExceptions SQLException
Checked
Sept 30, 2009 Sprenkle - CS209 15

Types of Exceptions

Unchecked Checked

Any exception that derives Any other exception
from Error or Programmer creates and

RuntimeException handles checked
Programmer does not exceptions
create/handle Compiler-enforced

checking

Try to make sure that they
Improves reliability

don’t occur
Often indicates For conditions from which
programmer error caller can reasonably be
E.g., precondition expected to recover
violations
Sept 30, 2009 Sprenkle - CS209 16

Types of Unchecked Exceptions

Derived from the class Error
Any line of code can generate because it is
internal error
Don’t worry about what to do if this happens
Derived from the class RuntimeException
Indicates a bug in the program
Fix the bug

Sept 30, 2009 Sprenkle - CS209 17

Checked Exceptions

Need to be handled by your program
Compiler enforced
Advertise the exceptions that a method
throws
For each method, tell the compiler:
What the method returns
What could possibly go wrong
Helps users of your interface know what your

method does and lets them decide how to handle
exceptions

Sept 30, 2009 Sprenkle - CS209 18

Discussion: Why Checked and
Unchecked Exceptions?

Why do we have exceptions that the compiler
doesn’t enforce that the programmer checks?

Think about examples of unchecked exceptions
and when those exceptions can occur

Sept 30, 2009 Sprenkle - CS209 19

THROWING EXCEPTIONS

Sept 30, 2009 Sprenkle - CS209 20

Methods and Exceptions Example

BufferedReader has method readLine()

Reads a line from a stream, such as a file or
network connection
Header: Part of “Aidvertising”

J \
public String readlLine() throws IOException

Interpreting the header: readLine will
return a String (if everything went right)

throw an IOException (if something went
wrong)

Sept 30, 2009 Sprenkle - CS209 21

Advertising Checked Exceptions

Advertising: document under what conditions
each exception is thrown in Javadoc

Use @throws tag
Examples of when your method should
advertise the checked exceptions that it may
throw

Your method calls a method that throws a
checked exception

Your method detects an error in its processing
and decides to throw an exception

Sept 30, 2009 Sprenkle - CS209 22

Example: Passing an Exception “Up”

public String readData(BufferedReader in)
throws IOException {
String stri;
strl = in.readlLine();
return stri;

}

readData() calls a method that can throw an
IOException

readLine() will throw this exception to our
method

Assuming we don’t want to handle the exception,
we throw the exception as well

Whoever calls readData will handle exception

Sept 30, 2009 Sprenkle - CS209 23

Throws an IOException

Generating Our Own Exception

If we have a program that reads a file byte-
by-byte and we know in advance how big the
file is...
What do we do if we reach the EOF while we
should still have data to read?

Generate our own Exception object!

Sept 30, 2009 Sprenkle - CS209 24

Example: Throwing An Exception

Expected number of bytes

public String readBytes(BufferedReader in, int num_bytes)
throws EOFException {
while C. . .) {
if (char_in == EOF) {
if (number_read < num_bytes)
throw new EOFException();

Sept 30, 2009 Sprenkle - CS209 25

Throwing An Exception

if (num_read < num_bytes)
throw new EOFException();

If we encounter an EOF, we make a new
object of class EOFException
Class derived from I0Exception
After making Exception object, we throw
it
Method ends at this point
Calling method handles exception, which says
that encountered an EOF before we should
have

Sept 30, 2009 Sprenkle - CS209 26

A More Descriptive Exception

Four constructors for most Exception classes
Default (no parameters)
Takes a String message

Describe the condition that generated this
exception more fully

2 more

if (num_read < num_bytes) {
String problem = “I read “ + num_read +
“ when I should have read ” + num_bytes;
throw new EOFException(problem);

3

Sept 30, 2009

Best messages include all state that
could have contributed to the problem | ,

Common Exceptions

IllegalArgumentException When caller passes in inappropriate
argument

IllegalStateException Invocation is illegal because of
receiving object’s state. (Ex: closing a
closed window)

Both inherit from RuntimeException
May seem like these cover it all but only used for
certain kinds of illegal arguments and exceptions
Not used when
A null argument passed in; should be a
NullPointerException
Pass in invalid index for an array; should be an
IndexOutOfBoundsException

Sept 30, 2009 Sprenkle - CS209 28

Factorial Alternatives

public static double factorial(int x) {
if(x <0)
return 0.0;
double fact = 1.0;
while(x > 1) {
fact *= x;
X==3
}

return fact;

Sept 30, 2009 Sprenkle - CS209 29

Note, no throws clause

Factorial Alternatives |y

public static double factorial(int x) {
if(Cx<0)
throw new IllegalArgumentException("x” +

“must be >= 0");

doyble fact = 1.0; I1llegalArgumentException:

while(x > 1) { Thrown to indicate that a method
fact *= X; has been passed an illegal or
X--3 inappropriate argument.

return fact;

}

‘ What are the pros and cons of these approaches?

Sept 30, 2009 Sprenkle - CS209 30

Goal: Failure Atomicity

After an object throws an exception, the object
should be in a well-defined, usable state

A failed method invocation should leave object in
state prior to invocation

Approaches:

Check parameters/state before performing
operation(s)

Do the failure-prone operations first
Use recovery code to “rollback” state
Apply to temporary object first, then copy over values

Sept 30, 2009 Sprenkle - CS209 31

Practice

We discussed a similar method
How should we implement this method?

public void setBirthday(int month, int day) {
}

Sept 30, 2009 Sprenkle - CS209 32

Assignment 6

Due Friday: Practice on Abstract classes,
interfaces, packages, equals method

Sept 30, 2009 Sprenkle - CS209 33

