
10/14/09

1

•  Collections Framework
 Maps
 Algorithms
 Traversing

•  Enumerated Types

• What is the Java Collection Framework
made up of?

• What interfaces/data structures did we
discuss?

• Why do we use Interface objects instead of
Implementations in our programs?

•  How do we declare/initialize a new Collection
object?

•  Interfaces
 Abstract data types that represent collections
 Collections can be manipulated independently of

implementation
•  Implementations

 Concrete implementations of the collection interfaces
 Reusable data structures

•  Algorithms
 Methods perform useful computations on collections,

e.g., searching and sorting
 Polymorphic: same method can be used on many

different implementations of collection interface
 Reusable functionality

•  Maps keys (of type <K>) to values (of type
<V>)

•  No duplicate keys
 Each key maps to at most one value

• <V> put(<K> key, <V> value)	
 Returns old value that key mapped to"

• <V> get(Object key) 	
 Returns value at that key (or null if no mapping)"

• Set<K> keySet() 	
 Returns the set of keys"

• HashMap	
 Fast

• TreeMap	
 Sorting
 Key-ordered iteration

• LinkedHashMap	
 Fast
 Insertion-order iteration
 Remove stale mappings  custom caching

10/14/09

2

•  Declare types for both keys and values
• class HashMap<K,V>	

Keys are Strings
Values are Lists of Strings

Map<String, List<String>> map 	
	= new HashMap<String, List<String>>();	

•  How did we keep track of a pet’s votes in
PetSurvey.java?

•  Any limitations? Inefficiencies?
 Could we do better? Be more efficient?

PetSurvey3.java	

Implement: castVote, getAnimals

•  Polymorphic algorithms
•  Reusable functionality
•  Implemented in the Collections class

 Static methods, 1st argument is the collection

•  Sorting – optional Comparator	
•  Shuffling
•  Routine data manipulation: reverse, copy, fill,

swap, addAll
•  Searching – binarySearch
•  Composition – frequency, disjoint
•  Finding min, max

Update Deck class

10/14/09

3

•  For-each loop:

•  Valid for all Collections	
 Maps (and its subclasses) are not
Collections	

 But, Map’s keySet() is a Set and values()
is a Collection	

for (Object o : collection) 	
 System.out.println(o);	

•  Java Interface
•  To get an Iterator from a Collection

object:

 Returns an Iterator over the elements in this
collection

 Example:

Iterator<E> iterator()

Iterator<String> iter = keys.iterator();	

• <E> next()	
 Get the next element

•  boolean hasNext() 	
 Are there more elements?

•  void remove() 	
 Remove the previous element
 Only safe way to remove elements during

iteration
•  Not known what will happen if remove elements

in for-each loop

•  Always between two elements

static void filter(Collection c) {	
 	Iterator i = c.iterator();	

	while(i.hasNext()) {	
	 	// if the next element does not	
	 	// adhere to the condition, remove it 	
	 	if (!cond(i.next())) {	

 	 	i.remove();	
	 	}	

 	}	
}	

•  Methods to traverse list backwards too
 hasPrevious()	
 previous()	

•  To get a ListIterator:
 listIterator(int position)	

•  Pass in size() as index to get at end of list
•  Used for insertion/modification/deletion in

linked lists in the middle

10/14/09

4

•  Legacy class
•  Similar to Iterator	
•  Example methods:

 boolean hasMoreElements() 	
 Object nextElement() 	

•  Longer method names
•  Doesn’t have remove operation

•  For multiple threads sharing same collection
•  Slow down typical programs

 Avoid for now
•  e.g., Vector, Hashtable	
•  See java.util.concurrent	

•  Provides common, well-known interface
  Allows interoperability among unrelated APIs
  Reduces effort to learn and to use new APIs for different

implementations
•  Reduces programming effort: provides useful, reusable

data structures and algorithms
•  Increases program speed and quality: provides high-

performance, high-quality implementations of data
structures and algorithms; interchangeable
implementations  tuning

•  Reduces effort to design new APIs: use standard
collection interface for your collection

•  Fosters software reuse: New data structures/algorithms
that conform to the standard collection interfaces are
reusable

•  Also called enums
 More powerful than enums in C
 Added Java 1.5

Type whose legal values consist of
a fixed set of constants

10/14/09

5

•  Drawbacks
 No type safety (ORANGE vs APPLE?)
 Compile-time constants

•  Change associated int, other code needs to be recompiled
 Weak debug information
 Can’t iterate over them reliably; size of group?

•  Similar: String enum pattern

public static final int APPLE_FUJI 	 	 	= 0;	
public static final int APPLE_PIPPIN 	 	= 1;	
public static final int APPLE_GRANNY_SMITH 	= 2;	

public static final int ORANGE_NAVEL 	 	= 0;	
public static final int ORANGE_TEMPLE 	 	= 1;	
public static final int ORANGE_BLOOD 	 	= 2;	

•  Full-fledged class
 Can add arbitrary methods and fields
 Implementations of Object methods,
Comparable interface, …

 Effectively final

public enum Apple {FUJI, PIPPIN, GRANNY_SMITH};	
public enum Orange {NAVEL, TEMPLE, BLOOD};	

Each is a public static
final instance

Apple lunch = Apple.FUJI;	
Use:

•  Are like inner classes in Java
 Entirely nested within another class

•  Implicitly inherits from java.lang.Enum	
 boolean equals(Object other)	
 int compareTo(E o)	
 String name()	

•  Returns the name of this enum constant, exactly
as declared in its enum declaration

 int ordinal()	
•  Returns the ordinal of this enumeration constant,

i.e., its position in its enum declaration, where the
initial constant is assigned an ordinal of zero

PlanetTest.java	

•  Has static values() method
 Returns array of values in order declared
 E.g., FIJI, PIPPIN, GRANNY_SMITH 	

•  Can be used in switch statements
switch(lunch) {	

	case Apple.FUJI:	
	 	price = 1.43;	
	…	

}	

•  State?
 How to represent?

•  API?

Implement:
 boolean sameSuit(Card c)	
 int getRummyValue()

10/14/09

6

•  Assignment 8: Due Wednesday
 Practice with Collections, User interface

