
11/6/09

1

•  Good enough design
•  Introduction to GUIs in Java

•  How did you make design decisions?

• Were there any particularly difficult design
decisions?
 What were the tradeoffs?

•  Did anybody consider making a FileData or
File class?

•  Code should be soft
 Eclipse makes code easier to change

•  The Refactor menu is a great resource
•  Keep asking yourself

 Is this understandable?
•  Will other people know what this code means?

 Maintaining code and bug fixes are done much
more than writing new code

 How is this code most likely to change?
 Does this code have a funny smell?

•  Literals, long methods, large classes, …

•  Write code and then rewrite code
 Eye toward extensibility, flexibility, maintainability,

and readability
 Maintain correctness

•  Reading/understanding other people’s code can
be difficult
 Make your code readable, understandable

•  Probably impossible to design/write “correctly”
the first time
 A lot harder to get the logic right, make sure you’re

not creating bugs, know/check the right answer…
 Could cause yourself headaches coding this way

first

Perfect Design
 Follows all design

principles
  OCP, Single Responsibility, no

code smells, …

-  May not be possible
  Infinite refactoring,

development

− Code never released

Good-enough Design
− Not everyone agrees on

design
− Maintenance requires

changes to a few places
 Code gets released to

customers

Similar tradeoffs in testing

11/6/09

2

•  Our focus has been Object-oriented and
Procedural paradigms

•  Other paradigms
 Event-driven

•  GUIs, Web applications
 Distributed

•  Web applications, Grid
 Concurrent
 Parallel
 Aspect-oriented

Blurred lines
between paradigms,

Not completely
independent

•  AWT: Abstract Windowing Toolkit
 Original GUI toolkit
 Relies on operating system to render GUIs

•  Match look and feel of platform
 Classes in java.awt.*	

•  Swing: added to Java2
 Classes in javax.swing.*	
 Extends AWT
 Provides Java look and feel for applications

•  But can plug in other look & feels

•  Swing does not completely replace AWT
•  Using the Swing graphics programming

model
 Improves performance
 Allows more efficient development of GUIs

• We will use Swing mostly
 Leverage AWT

•  Top-level components
 JFrame, JWindow, JDialog, JApplet	

•  GUI Elements
 JButton, JLabel, JMenuBar, …	

11/6/09

3

•  Frame: Most basic unit of graphics
programming

•  Example of a container
 A container contains other UI components

•  A window that is not contained within another
window
 i.e., a top-level window

• JFrame Swing class implements a frame

public class Game extends JFrame implements
	KeyListener {	

	public static void main(String[] args) {	
	 	Game session = new Game();	
	 	session.init();	
	}	

	public void init() {	
	 	// Top-left corner is (0,0)	
	 	// width/height: XBOUND, YBOUND	
	 	setBounds(0, 0, XBOUND, YBOUND);	
	 	// Shows the window	
	 	setVisible(true);	
	 	…	
	}	

}

• JFrame is derived from java.awt.Frame	
 Frame class is derived from Container class

•  Container: anything that can contain UI
components

• Class hierarchy

Yikes!
Don’t get lost!

• Component	
 Abstract class
 Everything you see is a component

•  Superclass of Container	
 Many methods

•  Some deprecated: be careful

• Container	
 Concrete implementation of Component	
 Base class of many classes

• add(Component c)	
• setSize()	

 Sets size of frame in pixels
• setLocation()	

 Sets location of frame
•  Coordinates of top-left corner

• setBounds()	
 Sets both size and location of frame

•  Provides information needed for setSize() and
setLocation()	

• remove(Component c)	
• getSize() 	

 Returns size of frame
• getLocation() 	

 Returns current location of frame, relative to
enclosing container

• getLocationOnScreen()	
 Returns current location of frame, using absolute

screen coordinates

11/6/09

4

•  Top-level window
•  No borders
•  No Menu Bar
• dispose()	

 Closes window and reclaims resources
associated with it

• toBack()	
 Sends window to back, may lose focus/activation

• toFront()	
 Bring to front, make this the focused window

•  Top-level window with title and borders
• setTitle() 	

 Sets title of frame (displayed in title bar)
• setResizable()	

 Can the user resize the frame?

• getExtendedState()	
• setExtendedState(int state)	
•  States (defined constants):

 NORMAL	
 ICONIFIED	
 MAXIMIZED_HORIZ	
 MAXIMIZED_VERT	
 MAXIMIZED_BOTH 	

•  Since screens have various resolutions, how
do you determine how big to make a frame?
 Determine the screen resolution
 Obtain system-information, such as screen

resolution, using a Toolkit object
• Toolkit’s getScreenSize() 	

 Returns screen resolution as a Dimension object

 Toolkit, Dimension: part of java.awt
package

• Dimension object has a width and height,
in pixels
 public instance fields

Toolkit kit = Toolkit.getDefaultToolKit();	
Dimension screenSize = kit.getScreenSize();	
int screenWidth = screenSize.width;	
int screenHeight = screenSize.height;	

class CenteredFrame extends JFrame {	

	public CenteredFrame() {	
	 Toolkit kit = Toolkit.getDefaultToolkit();	
	 Dimension screenSize = kit.getScreenSize();	
	 int screenHeight = screenSize.height;	
	 int screenWidth = screenSize.width;	
	 		
	 setSize(screenWidth / 2, screenHeight / 2);	
	 setLocation(screenWidth / 4, screenHeight / 4);	

	 setTitle(“My Centered Frame”);	
	}	

}	

What will this Frame look like?

11/6/09

5

JPanel	

JButton	

JFrame	

JLabel	

GUI Internal structure

JFrame	

JPanel	

JButton	 JLabel	

containers

1.  Create it
2.  Configure it
3.  Add children (if container)
4.  Add to parent (if not JFrame)
5.  Listen to it

order
important

1.  Create it
  JButton b = new JButton();	

2.  Configure it
  b.setText(“press me”);	
  b.setForeground(Color.blue);	

3.  Add it to parent
  panel.add(b);	

4.  Listen to it
  Events: Listeners

•  Contains ContentPane	
 A Container object that

holds components you add,
placing them in the frame

 The part of the frame that
holds UI components

ContentPane	

JFrame	

1. Create (top down):
 Frame
 Container
 Components
 Listeners

2. Add (bottom up):
 Listeners into

components
 Components into

panel
 Panel into frame

Container

JButton

Listener

JFrame

JLabel

Content
Pane Create Ad
d

// create the components	
JFrame f = new JFrame(“title”);	
Container pane = f.getContentPane();	
JButton b = new JButton(“press me”);	

// add button to panel	
pane.add(b); 	 		

// show the frame	
f.setVisible(true);	

press me

11/6/09

6

•  Implements a panel
 A panel has a surface on which you can draw
 A panel is a Container	

•  Can add components to a panel
 Useful in designing layouts

•  Define a new class that extends JPanel
•  Override paintComponent(Graphics g)

in derived class
 Graphics object: collection of settings for

drawing images and text, e.g., colors and fonts
 All drawing in Java goes through a Graphics

object

class MyPanel extends JPanel {	

	public void paintComponent(Graphics g) {	
	 		
	 	// code for drawing goes here	

	}	
}	

•  System calls paintComponent()
automatically whenever container needs to
be redrawn
 Do not call this method yourself
 It will be called when it needs to be

•  If need to force repainting the screen, call
repaint()
 Calls paintComponent() for all needed

components with appropriate Graphics objects

•  Measurements on a Graphics object is in
pixels, as an offset from the top-left corner
 (0,0) coordinates represent the top-left corner of

the container on which you are drawing
(0,0)

Y-axis

X-axis +x

+y

(x,y)

11/6/09

7

•  Displaying text is a special type of drawing,
called rendering text

•  To render text on a panel, call drawString()
class HelloWorldPanel extends JPanel {	

	public static final int MESSAGE_X = 75;	
	public static final int MESSAGE_Y = 100;	

	public void paintComponent(Graphics g) {	
	 	super.paintComponent(g);	
	 		
	 	g.drawString(“Hello World.”,	
	 	 	MESSAGE_X, MESSAGE_Y);	
	}	

}	

•  Notice we call superclass’s (JPanel)
paintComponent() method

• JPanel has its own idea on how to draw/
paint the panel
 Fills in the background color

•  To make sure background color gets filled,
call superclass’s paintComponent()
 Every JPanel should color its background

•  Previous code drew text using default
system font

•  Can change the font
•  Need to determine which fonts are installed

on machine running the program

• GraphicsEnvironment	
 Represents the system’s graphical environment
 Call getAvailableFontFamilyNames()

•  Returns an array of Strings
•  Each String is the name of a font installed on the

system

•  Your program can look through fonts to see if
font(s) it wants is available on system

•  Five fonts are always available, mapped to
some font on machine
 SansSerif, Serif, Monospaced, Dialog, DialogInput

import java.awt.*;	

public class ListFonts {	

	public static void main(String[] args) {	
	 String[] fontNames = GraphicsEnvironment	
	 	 .getLocalGraphicsEnvironment()	
	 	 .getAvailableFontFamilyNames();	
	 for (int i=0; i < fontNames.length; i++)	
	 		 	System.out.println(fontNames[i]);	
	}	

}	

11/6/09

8

• Font object represents font on the system
• Font constructor takes 3 arguments:

 a String with the font name
 a constant (defined in the Font class) that

describes the font style (plain, bold, italic, or
bold italic)

 an integer for the point size

Font sansbold14 = new Font(“SansSerif”, Font.BOLD, 14);	
Font helvi12 = new Font(“Helvetica”, Font.ITALIC, 12);	

Font sansbold14 = new Font(“SansSerif”, Font.BOLD, 14);	
g.setFont(sansbold14);	
g.drawString(“Hello there in SansSerif.”, 75, 100);	

Game.java	

•  Next Friday: 2nd Exam
 All about Python vs. Java, testing, coverage,

design principles (tradeoffs), GUIs
 Terminology

•  Following Monday: Roulette Refactoring due

