
11/2/09

1

•  Code Critique
 Identifying smells

•  Refactoring
•  Liskov Substitution Principle

• What goal are we designing to?
• What is the typical fix for code smells?

 What is a limitation of those fixes?

•  How do we address change in general?

•  If a number has a special meaning, make it a
constant
 Distinguish between 0 and

NO_VALUE_ASSIGNED
 If value changes (-1 instead of 0), only one place

to change

Eclipse: Refactor  Extract Constant

Divergent Change
•  Problem: one class

commonly changed in
different ways for different
reasons

•  Solution:
  Identify changes for a

particular cause
  Put into a class (extract)

Shotgun Surgery
•  Problem: a change

causes changes in many
classes

•  Solution:
  Identify class that changes

should belong to

Goal: 1-to-1 mapping of common changes to classes

•  Problem: You have some data that always
“hangs out together”

•  Possible Solution: Maybe they should be an
object
 Check: if you deleted one of those pieces of

data, would the others make sense?
•  If answer is no, should be an object

Eclipse: Refactor  Extract Class

•  Dynamic coupling:
 getOrder().getCustomer().getAddress().getState()	
•  Problem: client coupled to navigation

structure
 Depends on too many other classes
 Change to intermediate class  Change in this

class
•  Fix: add delegate method

 Example: add method getShippingState()	
 Can go too far if adding too many methods

Eclipse: Check references
 Refactor  Extract Method

11/2/09

2

•  Issue:
 Many methods of one class are delegating to

another class
•  Possible Solutions

 Inline method into caller
 If there is additional behavior, replace delegation

with inheritance to turn the middle man into a
subclass of the real object

•  Problem
 Class in question doesn’t do much
 Classes cost time, money to maintain &

understand
•  How could this happen?

 Refactoring!
 Planned to be implemented but never happened

•  Solution
 Get rid of class

•  Inline or collapse subclass into parent class

•  Beware of too much abstraction, allowing for
too much flexibility that isn’t required

•  Solution: Collapse classes  Describe what the code or method is doing
 Should be reserved for why, not what

•  Solutions:
 If need a comment for a block of code (or a long

statement)  create a method with a descriptive
name

 If need a comment to describe method, rename
method with more descriptive name

Problem: Comments used as Febreze to
cover up smells

•  Discuss more code smells and solutions
(Design Patterns) later

•  Code smells are not always bad
 Do not always mean code is poorly designed

•  Open code is not always bad
•  Need to use your judgment

 Good judgment comes from experience.
 How do you get experience? Bad judgment

works every time

Goal: Gain experience to improve your judgment

11/2/09

3

• What does abstraction allow?

•  Are there any limitations to abstraction?

•  Named after Barbara Liskov
 MIT Professor of Engineering
 2008 ACM Turing Award
 Contributions to programming

languages, pervasive
computing

 Trivia: first woman in the
United States to receive a
Ph.D. from a computer
science department
(Stanford, 1968)

•  The substitution principle:

•  In other words…

If for each object o1 of type S there is an object o2
of type T such that for all programs P defined in
terms of T, the behavior of P is unchanged when
o1 is substituted for o2, then S is a subtype of T.

If a module is using a Base class, then it should be
able to replace the Base class with a Derived class

without affecting the functioning of the module.

Wing & Liskov, 1994

• Why isn’t this good code?
•  How could we write this in a better way?

public void drawShape(Shape shape) {	
	if (shape instanceof Square) {	
	 	drawSquare(shape);	
	}	
	else if(shape instanceof Circle) {	
	 	drawCircle(shape);	
	}	

}	

•  Previous example: had to know all of the
Shape classes
 Update whenever a Shape is added or removed

•  Better code: Polymorphic!

public void drawShape(Shape shape) {	
	shape.draw();	

}	

public class Rectangle {	
	private int myHeight;	
	private int myWidth;	

	public void setWidth(int w) {	
	 	myWeight = w;	
	}	

	public void setHeight(int h) {	
	 	myHeight = h;	
	}	

	// getters…	

}	

11/2/09

4

•  A square is a rectangle
 But a rectangle is not a square

•  In the interest of code reuse

•  Any problems with this implementation?
 Inherits:

public class Square extends Rectangle 	

private int myHeight;	
private int myWidth;	
public void setWidth(int w);	
public void setHeight(int h);	

public void setWidth(int w) {	
	super.setWidth(w);	
	super.setHeight(w);	

}	

public void setHeight(int h) {	
	super.setWidth(h);	
	super.setHeight(h);	

}	

•  Consider the function:

• What happens if it’s called with a Square?

public void testMethod(Rectangle r) {	
	r.setWidth(5);	
	r.setHeight(4);	
	assertEquals(20, r.getWidth()*r.getHeight());	

}	

•  A Square object is not a Rectangle
object

•  Behaviors are different
•  Clients depend on behaviors

Lesson: All derivatives of class must
have the same behavior

•  Methods of classes declare preconditions and
postconditions
 Preconditions must be met for method to execute
 After executing, postconditions must be true
 Example for Rectangle’s setWidth:

•  myWidth == newWidth && myHeight == oldHeight

•  For derivatives
 Preconditions can only be weakened
 Postconditions can only be strengthened
➥ Derivatives must adhere to constraints for base

class

•  Liskov Substitution Principle (a.k.a. design by
contract) is an important feature of programs
that conform to the Open-Closed Principle
 Derived types must be completely substitutable

for their base types
 Derived types can then be modified without

consequence

11/2/09

5

•  No “right” answer
 Many design decisions
 Want you to defend your design decision in code

critique
No refactoring Lots of refactoring

Iterate

Bins Assignment

Focus: Readability

• What does the code do?
 What is the purpose/responsibility of each class?

• What are the good parts of the code?

• What are some of the code smells?

•  Given: a problem specification and a solution to
the problem
 You refactoring your own code is emotional
 More objective with someone else’s solution

•  Goals
 Read and understand someone else’s code

•  Haven’t done much of this in Java
 Critique code (do you smell something?)

•  Identify, articulate problems
 Refactor code to solve problems identified
 Write tests to verify the code

