Objectives

Animation
Design Patterns

Nov 16, 2009 Sprenkle - CS209 1

Discussion of Roulette Assignment

How easy/difficult to refactor for extensibility?
Was it easier to add to your refactored code?

» What would your refactored classes have looked
like if hadn’t told you that you were going to add
the three other bets?

How easy/difficult was it to test your classes?

Nov 16, 2009 Sprenkle - CS209 2

Animation Review

What object do we use to “draw” in Java?
» What are some things we can do?

Nov 16, 2009 Sprenkle - CS209 3

Understanding Code

Import project:
/home/courses/cs209/handouts/screensavers.tar

Bouncers (package bouncers)
» What does each class do?
» How does it draw?
» How does it animate?

Nov 16, 2009 Sprenkle - CS209 4

DESIGN PATTERNS

Nov 16, 2009 Sprenkle - CS209 5

Design Pattern

General reusable solution to a commonly
occurring problem in software design

Not a finished design that can be
transformed directly into code

Description or template for how to solve a
problem that can be used in many different
situations

~ “Experience reuse”, rather than code reuse

Nov 16, 2009 Sprenkle - CS209 6

Defined Design Patterns

Software best practices

Catalogued and discussed in Design
Patterns: Elements of Reusable Object-
Oriented Software

» Written by the “Gang of Four”: Erich Gamma,
Richard Helm, Ralph Johnson and John
Vlissides

» Erich Gamma also co-wrote JUnit framework

Nov 16, 2009 Sprenkle - CS209

Applying Design Patterns

Recognize problem as one that can be
solved by a design pattern

Apply pattern to your problem

Danger: over-applying design patterns
» Fall back: Identify and resolve code smells

Nov 16, 2009 Sprenkle - CS209 8

Motivating Example

Birds
» Various flying behaviors (some fly, some don't)
» Make different sounds

» Examples: Duck, Penguin, Hummingbird,
Ostrich, Chicken, Oriole, ...

How can we represent
different birds?

Nov 16, 2009 Sprenkle - CS209

Designing Flexible Behaviors

Include behaviors in abstract Bird class

> FlyBehavior object has performFly()
method

» SoundBehavior object has makeSound()
method

Could have setter methods in Bird class to
change these
» Example: bird gets wings clipped

Nov 16, 2009 Sprenkle - CS209 10

Designing Flexible Behaviors
public abstract class Bird {
protected FlyBehavior flyB;
protected SoundBehavior soundB;
public Bird() {
1

public void performSound() {
soundB.makeSound();

public void performFly() {
flyB.performFly();

Designing Flexible Behaviors

public class Duck {
//Recall: protected FlyBehavior flyB;
//Recall: protected SoundBehavior soundB;

public Duck() {

< What dq we need to
do in here?

Nov 16, 2009 Sprenkle - CS209 12

Designing Flexible Behaviors

public class Duck {

public Duck() {
flyB = new FlyHighBehavior(Q);
soundB = new QuackBehavior();

3

1 |Do we need to do anything else to this class,
with respect to fly and sound behavior?

Nov 16, 2009 Sprenkle - CS209 13

How Do We Implement...

Hummingbird?
Penguin?
Ostrich?

Nov 16, 2009 Sprenkle - CS209 14

Class Diagram interface ‘
o FlyBehavior

Bird 25% performFLy()

FlyBehavior e ? ?
SoundBehavior o

performSound() \\ NoFly FlyHigh

performFly() NperformFly() | performFly()

f \/ interface

SoundBehavior
Duck makeSound()
(Implementations of
interface ...)
Nov 16, 2009 UML Diagram Sprenkle - CS209 15

Composition
» Using other objects in your class
» “Delegate” responsibilities to this object

Why is composition preferred over inheritance?

» Composition: Provide different behaviors for your
class by plugging in new object
» Inheritance - dependence on parent class

Only want to depend on things you know won’t
change (higher stability)

Nov 16, 2009 Sprenkle - CS209 16

Another Solution: Interface

We could have a Flyable with a
performFly() method anda
Chirpable interface with a chirp()
method

\Pros and cons of this solution? \

Nov 16, 2009 Sprenkle - CS209 17

Pros and Cons of Interface Solution

We could have a Flyable with a

performFly() method and a

Chirpable interface with a chirp()

method

Pros: Using an interface > more flexible

» Depending on interface instead of
implementation

Con: Duplicated code, implement in each
class

Nov 16, 2009 Sprenkle - CS209 18

Class Diagram interface _
goc;\a'{\o Fl yﬁehavz;o(r;
Bird 25 performF
FlyBehavior 4 ? Strategies ?
SoundBehavior o
performSound() NoFly FlyHigh
performFly() \\Per‘for‘mFly() performFly()

\/ interface
SoundBehavior

Duck makeSound()
(Implementations of
interface ...)
Nov 16,2000 UML Diagram sprenkie - cs209 19

Design Pattern: Strategy

Defines a family of algorithms, encapsulates
each one, and makes them interchangeable
Lets algorithm/behavior vary independently
from clients that use it

» Allows behavior changes at runtime

Design Principle:

Nov 16, 2009 Sprenkle - CS209 20

Design Pattern: Factory Methods

Allows you to create objects without
specifying exact (concrete) class of created
object

How it works:

1. Define a method for creating objects

2. Child classes override method to specify the

derived type of product that will be created

Often used to refer to any method whose
main purpose is creating objects

Nov 16, 2009 Sprenkle - CS209 21

Factory Method Pattern

Product Creator
factoryMethod()
anOperation()

association ?

ConcreteProduct @l ConcreteCreator

factoryMethod()

UML Class Diagram

Nov 16, 2009 Sprenkle - CS209 22

CODE REVIEW

Nov 16, 2009 Sprenkle - CS209 23

Understanding Code: Screen Savers

In Eclipse, import an existing project:
/home/courses/cs209/handouts/
screensavers.tar
RunMain class
Answer questions about code
» What represents an object in the screen saver?
> How generates screen saver objects?
» How handles animation?
» How handles events?

Nov 16, 2009 Sprenkle - CS209 24

Mapping Factory Design Pattern
to Screen Savers

How does the screen saver application use
factory methods?

What would be the alternative solution?

What problems are the factories addressing?

Nov 16, 2009 Sprenkle - CS209 25

Mapping Factory Design Pattern
to Screen Savers
How does the screen saver application use
factory methods?
What would be the alternative solution?
What problems are the factories addressing?
» Delegate creation of concrete Movers
Likely to change
Encapsulate change in factory

» Using abstraction instead of specifying concrete
classes

Reduces dependencies to concrete classes

Nov 16, 2009 Sprenkle - CS209 26

Compiler’s Names of Classes

Anonymous class names
> ClassName$#.class

Look inside <workspace_dir>/
ScreenSavers/bin/screensaver/nomodify

Nov 16, 2009 Sprenkle - CS209 27

Assignment 12

Complete screen savers for
~ Racers

» Random Walkers
~ “Interesting” circles

Due Friday

Nov 16, 2009 Sprenkle - CS209 28

