
11/11/09

1

•  Event Handling
•  Animation

• What is the purpose of a Layout Manager?
•  Describe two different layout managers
•  How can we create a customized layout?
• What are the components of event handling?

•  Show different versions of
ColoredBackground GUI

•  Not every event is as simple to handle as a
button click

• When a user closes a window, the window
simply stops being displayed
 Program will not end

•  Suppose we want our program to end when
a certain frame is closed

•  Closing a frame is a window event
 In contrast to an action event

•  To catch window events, create an object of
a class that implements WindowListener
interface
 WindowListener is registered with frame using

its addWindowListener method

•  Note the parallels with action events
 Different listener type and register it using a

different (but similar) method call

11/11/09

2

•  Contains 7 methods
 One for each type of window event
 A class that implements WindowListener

must implement all 7 methods
public interface WindowListener {	

	void windowOpened(WindowEvent e);	
	void windowClosing(WindowEvent e);	
	void windowClosed(WindowEvent e);	
	void windowIconified(WindowEvent e);	
	void windowDeiconified(WindowEvent e);	
	void windowActivated(WindowEvent e);	
	void windowDeactivated(WindowEvent e);	

}	

class Terminator implements WindowListener {	
	public void windowClosing(WindowEvent evt) {	
	 	System.exit(0);	
	}	

	public void windowOpened(WindowEvent e) {}	
	public void windowClosed(WindowEvent e) {}	
	public void windowIconified(WindowEvent e) {}	
	public void windowDeiconified(WindowEvent e) {}	
	public void windowActivated(WindowEvent e) {}	
	public void windowDeactivated(WindowEvent e) {}	

}	

What does this class do?	

•  Listens for window events on a frame and
ends the program when the frame is closed
class Terminator implements WindowListener {	

	public void windowClosing(WindowEvent evt) {	
	 	System.exit(0);	
	}	

	public void windowOpened(WindowEvent e) {}	
	public void windowClosed(WindowEvent e) {}	
	public void windowIconified(WindowEvent e) {}	
	public void windowDeiconified(WindowEvent e) {}	
	public void windowActivated(WindowEvent e) {}	
	public void windowDeactivated(WindowEvent e) {}	

}	
For JFrames use setDefaultClosedOperation	

• Writing code for 6 methods that don’t do
anything is somewhat tedious
 Eclipse helps

•  Most AWT listener interfaces have a
corresponding adapter class
 Implements each of interface’s methods but

does nothing inside each
 No adapter classes for AWT interfaces with only

one method (such as ActionListener)

•  If you want a WindowListener class that
does nothing with 6 of the 7 window events
but ends program when window is closed
 Create a new class that extends
WindowAdapter and override relevant method
(s)

• When could extending a class be a problem?
 How big of a concern is that for this specific

case/type of class?

•  Redefine Terminator in much less code…

class Terminator extends WindowAdapter {	
	public void windowClosing(WindowEvent evt) {	
	 	System.exit(0);	
	}	
	// all other methods are the same as in 	
	// WindowAdapter—all do nothing.	

}	

11/11/09

3

•  Register Terminator to listen for window
events

•  Assuming that our “main” window frame is
named frame (i.e., if frame is closed the
program should exit)…

WindowListener listener = new Terminator();	
frame.addWindowListener(listener);	

frame.addWindowListener(new	
	WindowAdapter() {	
	 	public void windowClosing(WindowEvent evt) {	
	 	 	System.exit(0);	
	 	}	
	});	

frame.addWindowListener(new	
	WindowAdapter() {	
	 	public void windowClosing(WindowEvent evt) {	
	 	 	System.exit(0);	
	 	}	
	});	

•  10 different types of events in AWT
 Semantic events
 Low-level events

•  Semantic event: event that expresses what
a user did

Type Cause
ActionEvent	 button click, menu selection, selecting a

list item, pressing ENTER in a text field
AdjustmentEvent	 User adjusted a scroll bar

ItemEvent 	 user made a selection from a set of
checkboxes or list items

TextEvent	 the contents of a text field or text area
were changed

11/11/09

4

•  Low-level event: makes a semantic event
possible

Type Cause

ComponentEvent 	 component changed (resized,
moved, shown, etc…)

KeyEvent 	 a key pressed or released

MouseEvent 	 mouse moved or dragged, or mouse
button pressed

FocusEvent 	 component got or lost focus

WindowEvent 	 window activated, closed, etc.

ContainerEvent 	 component added or deleted

•  Example:
 Adjusting a scrollbar is a semantic event
 Made possible by low-level events, such as

dragging the mouse
•  As a general rule,

low-level events cause
semantic events to happen

•  11 Event Listener Interfaces
 ActionListener, AdjustmentListener,
ItemListener, TextListener,
ComponentListener, ContainerListener,
FocusListener, KeyListener,
MouseListener, MouseMotionListener, and
WindowListener	

•  See API for interfaces and their methods
•  Each listener interface with > 1 method has a

corresponding adapter class
  Implements interface with all empty methods

•  A component is a user interface element
 Ex: button, textfield, or scrollbar

•  All low-level events inherit from ComponentEvent	
 getComponent() returns component that originated

event
•  Similar to getSource() but returns object as a
Component and not an Object	

•  Example: A user inputs text into a text field,
generating a key event. Calling getComponent()
on the event returns a reference to that text field

javax.swing.JTextField[,75,5,87x28, …	

event.getComponent()

•  A container is a screen area or component
 Can contain components, such as a panel

•  A ContainerEvent is generated whenever
a component is added or removed from the
container
 Supports programming dynamically-changing

user interfaces

•  A FocusEvent is generated when a
component gains or loses focus

• FocusListener must implement two
methods:
 focusGained(): called whenever listener’s

event source gains focus
 focusLost(): called whenever listener’s

event source loses focus

11/11/09

5

•  A KeyEvent is generated when a key is
pressed or released

•  A KeyListener must implement 3
methods:
 keyPressed() will run whenever a key is

pressed
 keyReleased() will run whenever that key is

released
 keyTyped() combines the two above

•  Runs when key is pressed and then released and
signifies a keystroke

•  Any Component can be an event source for
a KeyEvent	
 A component generates a KeyEvent whenever

a key is typed in that component
•  For example, if user types into a text field

that text field will generate appropriate
KeyEvents

• MouseEvents are generated like KeyEvents
 mousePressed()	
 mouseReleased()	
 mouseClicked()	
 You can ignore first 2 if you only care about clicking

•  Call getClickCount() on a MouseEvent
object to distinguish between a single and a
double click

•  Distinguish between mouse buttons by calling
getModifiers() on a MouseEvent object
 E.g., middle button

• MouseEvents are also generated when
mouse pointer enters and leaves
components (mouseEntered() and
mouseExited())
 Part of MouseListener interface

•  Actual movement of mouse is handled with
MouseMotionListener interface
 Most applications only care about where you

click and not how and where you move mouse
pointer around

•  Combines WindowListener,
WindowFocusListener,
WindowStateListener	

WindowEventDemo.java	

11/11/09

6

• Abstract class
 Implementation different for each platform

• A collection of settings for drawing images
and text, such as colors and fonts

• Where used:
 paintComponent(Graphics g)	

•  Draw ovals, rounded rectangles within
bounding rectangle

•  Filled or outlined (e.g., fillRect vs
drawRect)

•  Can also draw arcs, polygons, polylines

Starting Position of oval
width	

height	

x, y	

•  Colors made up of three components
 Red, Green, Blue component
 RGB values

•  Components: either 0 to 255 or 0.0 to 1.0

• Color class defines 13 color constants
 black, blue, cyan, darkGray, gray,
green, lightGray, magenta, orange,
pink, red, white, and yellow	

 Also defined in all caps
 See API http://en.wikipedia.org/wiki/

List_of_colors	

1. Set the color/font
2. Draw the shape/string

ColorJPanel.java	

public static void main(String args[]) {	

 JFrame frame = new JFrame("Using colors");	
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);	

 ColorJPanel colorJPanel = new ColorJPanel(); 	
 frame.add(colorJPanel); 	

 frame.setSize(500, 180); 	
 frame.setVisible(true); 	

}

Extends JPanel	

•  Goblin Game
 How draws
 How does event handling
 How animates

•  Bouncers
 How draws
 How animates

Import project:
/home/courses/cs209/handouts/screensavers.tar	

11/11/09

7

•  If a test case passes, what does that mean?

•  If a test case fails, what does that mean?

•  If a test case passes, what does that mean?
 Code is correct (positive)
 Code has a bug that test case doesn’t reveal

(false negative)
•  If a test case fails, what does that mean?

 Code has a bug (negative)
•  Or doesn’t follow your specification

 Code is correct but test case is incorrect (false
positive)

•  Are there any other possibilities?

• Which is worse: false positives or false
negatives?

Test Case Result

Pass Fail

Application
Correct True

Positive
False

Negative

Faulty False
Positive

True
Negative

•  Determine your assumptions about
constructor

•  Plug in the appropriate Car implementation
for your tests

•  Run all your tests
 Look at pass/fail results, coverage results

•  Look at your tests  specification coverage

Car car = new CorrectCarFullTank();	

•  Incorrect specification of expected results
 getGear() returns an int, not a String
 Math errors

•  Missing tests of functionality
•  Missing assumptions

 Car in PARK when refueling
•  Changing Car API

 Package-private constructor
•  JUnit misunderstandings

 Set up; How many exceptions

Grade Points
A 270-300
B 240-269
C 210-239

11/11/09

8

•  Java
 Collections Framework
 Comparison with Python
 Jar files

•  Software Development
 Models
 Testing
 Design Principles
 Code smells
 Refactoring

•  GUI programming
 Event handling, inner classes

Document posted online

