Objectives

Inheritance
Final methods, fields

Packages
Wrapper Classes

More on Inheritance
Abstract Classes
Interfaces

Sept 28, 2009 Sprenkle - CS209 1

Review

How do we verify that an object variable is a
certain type?

How do we specify an object variable has a

different type (a derived type)?

What is the syntax for Javadoc comments?

How has developing in Eclipse been going?

Sept 28, 2009 Sprenkle - CS209 2

Code Review

Compare and contrast the following code
snippets:

for (int i = 1; i <= string.lengthQ); i++){
newString += string.charAt(string.lengthQ) - i);

for(int i=string.length()-1; i >=0 ; i--) {
newString += string.charAt(i);

3

Sept 28, 2009 Sprenkle - CS209 3

FINAL KEYWORD

Sept 28, 2009 Sprenkle - CS209 4

Preventing Inheritance

Sometimes, you do not want a class to derive from
one of your classes

A class that cannot be extended is known as a
final class

To make a class final, simply add the keyword
final in front of the class definition:

public final class Rooster extends Chicken {

3
Example of final class: System

Sept 28, 2009 Sprenkle - CS209 5

Final methods

Can make a method final

Any class derived from this class cannot override
the final methods

class Chicken {
éublic final String getName() { . . . }
}

By default, all methods ina final class are
final methods.

Sept 28, 2009 Sprenkle - CS209 6

Why final methods and classes?

Efficiency
Compiler can replace a final method call with
an inline method

Does not have to worry about another form of this
method that belongs to a derived class

JVM does not need to determine which method
to call dynamically
Safety

No alternate form of the method; straightforward
which version of the method you called

Sept 28, 2009 Sprenkle - CS209 7

PACKAGES

Sept 28, 2009 Sprenkle - CS209 8

Packages

Hierarchical structure of Java classes
Directories of directories
java
lang
':Obj ect
String
net Fully qualified name: java.util.Date
util
L Date

Use import to access packages

Sept 28, 2009 Sprenkle - CS209 9

Standard Practice

To reduce chance of a conflict between
names of classes, put classes in packages
Use package keyword to say that a class
belongs to a package:

package java.util;

First line in class file
Typically, use a unique prefix, similar to
domain names

com.ibm

edu.wlu.cs.logic

Sept 28, 2009 Sprenkle - CS209 10

Importing Packages
Can import one class at a time or all the
classes within a package
Examples:

import java.util.Date;
import java.io.*; e |mport entire package

* form may increase compile time
BUT, no effect on run-time performance

Sept 28, 2009 Sprenkle - CS209 "

WRAPPER CLASSES

Sept 28, 2009 Sprenkle - CS209 12

Wrapper Classes

Wrapper class for each primitive type
Sometimes need an instance of an Object

To use to store in HashMaps and other
Collections

Include functionality of parsing their
respective data types

int x = 10;
Integer y = new Integer(10);

Sept 28, 2009 Sprenkle - CS209 13

Wrapper Classes

Autoboxing — automatically create a wrapper
object

// implicitly 11 converted to
// new Integer(1l);
Integer y = 11;

Autounboxing — automatically extract a primitive
type

Integer x = new Integer(1l);
int y = x.intValue(Q);
int z = x; // implicitly, x is x.intValue(Q);

Convert right side for whatever is needed on the left

Sept 28, 2009 Sprenkle - CS209 14

Effective Java: Unnecessary Autoboxing

Can you find the inefficiency from object
creation?

Long sum = OL;
for (long i=0; i < Integer.MAX_VALUE; i++) {
SUM += 15 Constructs 2% Long instances

System.out.println(sum);

How to fix?

Sept 28, 2009 sprenkle - €S20 AUtobox. java 15

Effective Java: Unnecessary Autoboxing

Can you find the inefficiency from object

creation?

Long sum = 0OL;

for (long i=0; i < Integer.MAX_VALUE; i++) {
SUM += 15 Constructs 2%' Long instances

}
System.out.println(sum);

How to fix?

Lessons: |«Prefer primitives to boxed primitives
»Watch for unintentional autoboxing

Sept 28, 2009 sprenkle - €S20 Autobox. java 16

ABSTRACT CLASSES

Sept 28, 2009 Sprenkle - CS209 17

Abstract Classes

Some methods defined, others not defined
Classes in which not all methods are
implemented are abstract classes
public abstract class ZooAnimal
Blank methods are labeled as abstract
public abstract void exercise();

Sept 28, 2009 Sprenkle - CS209 18

Abstract Classes

An abstract class cannot be instantiated
i.e., can’t create an object of that class
But can have a constructor!
Child class of an abstract class can only be
instantiated if it overrides and implements
each abstract method of its parent class

If subclass does not override all abstract
methods, it is also abstract

Sept 28, 2009 Sprenkle - CS209

Abstract Classes

static, private, and final methods
cannot be abstract

.These cannot be overridden by a child class
final class cannot contain abstract

methods

A class can be abstract even if it has no

abstract methods
Use when implementation is incomplete and is
meant to serve as_a parent class for subclass(es)
that complete the implementation

Can have array of objects of abstract class

Does dynamic dispatch for methods

Sept 28, 2009 Sprenkle - CS209 20

Examples of abstract classes

Example 1:
java.net.Socket
java.net.SSLSocket (abstract)
Example 2:
java.util.Calendar (abstract)
java.util.GregorianCalendar

Sept 28, 2009 Sprenkle - CS209 21

Summary: Defining Abstract Classes

Define a class as abstract when have
partial implementation

Sept 28, 2009 Sprenkle - CS209

Better Organization of Game Classes

GameP1iece should be abstract
No default image associated with it
move method is abstract
Human class should implement move
method
From GamePiece class

Sept 28, 2009 Sprenkle - CS209 23

INTERFACES

Sept 28, 2009 Sprenkle - CS209

Interfaces

Like abstract classes with all abstract
methods

A set of requirements for classes to conform to
Pure specification, no implementation

Classes can implement one or more
interfaces

Sept 28, 2009 Sprenkle - CS209 25

Example of an Interface

We can call Arrays.sort() on an array

Arrays.sort() sorts arrays of any object class
that implements the Comparable interface
Classes that implement Comparable must
provide a way to decide if one object is less
than, greater than, or equal to another object

Sept 28, 2009 Sprenkle - CS209 26

java.lang.Comparable

public interface Comparable {
int compareTo(Object other);
3

Any object that is Comparable must have a
method named compareTo()
Returns:

< 0 for less than

0 for equals

> (O for greater than

Similar to Python’s __cmp__ method

Sept 28, 2009 Sprenkle - CS209 27

Implementing an Interface

In the class definition, specify that the class
will implement the specific interface

public class Chicken implements Comparable

Provide a definition for all methods specified
in interface

Sept 28, 2009 Sprenkle - CS209 28

How to determine Chicken order?

What if made the Chicken class
Comparable?

Sept 28, 2009 Sprenkle - CS209 29

Comparable Chickens
One way: order by height
public class Chicken implements Comparable {

public int compareTo(Object otherObject) {
Chicken other = (Chicken)otherObject;
if (height < other.getHeight())
return -1;
if (height > other.getHeight())
return 1;
return 0;
}
}

‘What if otherObject is not a Chicken? Update

Sept 28, 2009 Sprenkle - CS209 Chicken. J ava 3o

Comparable Interface API

Specifies what the compareTo() method
should do:

Return a —1 if the first object is less than the
second object (passed as a parameter)

Return a 1 if the second object (passed as a
parameter) is less than the first object

Return a 0 if the two objects are equal
Says what Java library classes implement
Comparable

Sept 28, 2009 Sprenkle - CS209 31

Interfaces

Contain only object (not class) methods
All methods are public
Implied if not explicit
Error to have protected or private (Why?)
Fields are constants that are static and
final
A class can implement multiple interfaces
Separated by commas in definition

Sept 28, 2009 Sprenkle - CS209 32

Testing for Interfaces

Use the instanceof operator to see if

an object implements an interface
e.g., to determine if an object can be compared
to another object using the Comparable
interface

if (obj instanceof Comparable) {

// runs if whatever class obj is an instance of
// implements the Comparable interface

¥
else {
// runs if it does not implement the interface
}
Sept 28, 2009 Sprenkle - CS209 33

Interface Object Variables

Can use an object variable to refer to an object of
any class that implements an interface
Using this object variable, can only access the
interface’s methods
For example...

Object obj;

{F (obj instanceof Comparable) {

Comparable comp = (Comparable) obj;
boolean res = comp.compareTo(obj2);

Sept 28, 2009 Sprenkle - CS209 34

Interface Definitions

public interface Comparable {
int compareTo(Object other);
3

Do not need to specify methods as public
Interface methods are public by default

Sept 28, 2009 Sprenkle - CS209 35

Interface Definitions and Inheritance

Can extend interfaces

Allows a chain of interfaces that go from general
to more specific

For example, define an interface for an object
that is capable of moving:

public interface Movable {
void move(double x, double y);
}

Sept 28, 2009 Sprenkle - CS209 36

Interface Definitions and Inheritance

A powered vehicle is also Movable

Must also have a milesPerGallon() method,
which will return its gas mileage

public interface Powered extends Movable {
double milesPerGallon();
}

Sept 28, 2009 Sprenkle - CS209 37

Constants in an Interface

If a variable is specified in an interface, it is
automatically a constant
public static final variable
public interface Powered extends Movable {
double milesPerGallon();

double SPEED_LIMIT = 95;
}

An object that implements Powered
interface has a constant SPEED_LIMIT
defined

Sept 28, 2009 Sprenkle - CS209 38

Interface Definitions and Inheritance

Powered interface extends Movable
interface

An object that implements Powered interface
must satisfy all requirements of that interface
as well as the parent interface.

A Powered object must have a
milesPerGallon() and move() method

Sept 28, 2009 Sprenkle - CS209 39

Multiple Interfaces

A class can implement multiple interfaces
Must fulfill the requirements of each interface
But NOT possible with inheritance

A class can only extend (or inherit from) one
class

public final class String implements
Serializable, Comparable, CharSequence { ..

Sept 28, 2009 Sprenkle - CS209 40

Common Uses of Interfaces

Define constants for multiple classes/
package

Something like global constants

However, not great design practice
Marker Interface

Interface that is empty

Use to identify an object that has a certain

property

E.g., Cloneable

Sept 28, 2009 Sprenkle - CS209 41

Using an Interface or Abstract Class

Interfaces Abstract Classes
Any class can use Contain partial
Can implement multiple implementation

interfaces Can'’t extend/subclass

No implementation multiple classes
Implementing methods Add non-abstract
multiple times methods without breaking

Adding a method to subclasses
interface will break
classes that implement

Sept 28, 2009 Sprenkle - CS209 42

One Option: Use Both!

Define interface, e.g., MyInterface
Define abstract class, e.g.,
AbstractMyInterface

Implements interface

Provides implementation for some methods

Sept 28, 2009 Sprenkle - CS209 43

Abstract Classes and Interfaces

Important structures in Java

Will return to/apply these ideas throughout
the course

Sept 28, 2009 Sprenkle - CS209

44

Due Friday: Assignment 6

Abstract classes practice
Make GameObject an abstract class
Define move as an abstract method

Update Birthday’s equals method
Packages

Organize MediaItem classes into a package
Interfaces practice

MediaItem and subclasses implement
Comparable interface

Sept 28, 2009 Sprenkle - CS209 45

