Objectives

Collections
Jar Files
Compiled vs Interpreted

Oct 6, 2008 Sprenkle - CS209 1

Review

What interfaces/data structures have we
been talking about in Java?

Why do we use Interface objects instead of
Implementations in our programs?

Oct 6, 2008 Sprenkle - CS209

Review: Collections Framework

Interfaces

Abstract data types that represent collections

Collections can be manipulated independently of
implementation

Implementations
Concrete implementations of the collection interfaces
Reusable data structures

Algorithms

Methods perform useful computations on collections,
e.g., searching and sorting

Polymorphic: same method can be used on many
different implementations of collection interface
Reusable functionality

Oct 6, 2008 Sprenkle - CS209 3

Traversing Collections

For-each loop:

for (Object o : collection)
System.out.println(o);
Valid for all Collections

Maps (and its subclasses) are not
Collections

But, Map’s keySet() is a Set and values()
isaCollection

Oct 6, 2008 Sprenkle - CS209 4

Traversing Collections: Iterator

Java Interface
<E> next()
Get the next element
boolean hasNext()
Are there more elements?
void remove()
Remove the previous element

Only safe way to remove elements during
iteration

Not known what will happen if remove elements in
for-each loop

Oct 6, 2008 Sprenkle - CS209 5

Iterator: Like a Cursor
Always between two elements

Element(0) Element(1) Element(2) Element(3)

Index: 0 1 2

w
S

Oct 6, 2008 Sprenkle - CS209 6




Polymorphic Filter Algorithm

static void filter(Collection c) {
Iterator i = c.iterator();
while(C i.hasNext(Q) ) {
// if the next element does not
// adhere to the condition, remove it
if (lcond(i.next())) {
i.remove();
}

3
3

Oct 6, 2008 Sprenkle - CS209

Traversing Lists: ListIterator

Methods to traverse list backwards
listIterator(int position)
Pass in size() as index to get at end of list
hasPrevious()
previous()
Used for insertion/modification/deletion in
linked lists in the middle

(2) El (3)

T
Index: 0 1 2 3 4

Oct 6, 2008 Sprenkle - CS209 8

Enumeration

Legacy class
Similar to Iterator
boolean hasMoreElements()
Object nextElement()
Longer method names
Doesn’t have remove operation

Oct 6, 2008 Sprenkle - CS209

Synchronized Collection Classes

For multiple threads sharing same collection

Slow down typical programs
Avoid for now

e.g., Vector, Hashtable
See java.util.concurrent

Oct 6, 2008 Sprenkle - CS209 10

Utility Class: Collections

Similar to Arrays class
Contains methods for
Binary searching
Sorting
Min/max finding (“extremes”)
Reversing
Shuffling

Oct 6, 2008 Sprenkle - CS209

LANGUAGE COMPARISON

Oct 6, 2008 Sprenkle - CS209 12




Language Comparison

Java Python

Oct 6, 2008 Sprenkle - CS209 13

Language Comparison
Java Python
Object-oriented Object-oriented

Statically typed Dynamically typed
Compiled Interpreted

Pros and cons of using each?

Oct 6, 2008 Sprenkle - CS209 14

Compiling vs Interpreted

What is a benefit of compiling (versus
interpreted languages)?

Oct 6, 2008 Sprenkle - CS209 15

Compiling

Translates high-level programming language to
machine code or byte code

Java: .class - bytecode
Compiler optimization techniques

Generate efficient bytecode/machine code

Examples: get rid of unused local variables,
transform loops

In Java: static typing for additional gains
Can execute that code multiple times
Performance gain

Interpreted = have to re-verify the code each time
executed

What can we do in Python that we can’t do in Java?

Oct 6, 2008 Sprenkle - CS209 16

Compiled vs Interpreted Languages

Compiled Interpreted
Efficient machine/byte Faster development
code generation /prototyping

Performance gains

Oct 6, 2008 Sprenkle - CS209 17

Midterm Questions?

Oct 6, 2008 Sprenkle - CS209 18




Midterm Notes

See midterm prep guide on class web site
Terminology heavy
Length of exam

Oct 6, 2008 Sprenkle - CS209 19




