Objectives

Analysis and Design
Designing APls

Nov 17, 2008 Sprenkle - CS209 1

Take-Home: SLogo Design

SLogo: Final project

Sketch of interface

Sketch of classes
Those who already started: <= 20 minutes
Those who haven’t started: <= 30 minutes

=>Due Wednesday

Nov 17, 2008 Sprenkle - CS209 2

ANALYSIS & DESIGN:
FORMALIZED

Nov 17, 2008 Sprenkle - CS209 3

Design Heuristics

Model real world whenever possible
Avoid all-powerful (omnipotent) classes
Distribute system intelligence among classes
evenly
Top-level classes should share work uniformly
More easily understood system
More easily communicated design
Minimize # of messages between class and
helper
Reduce coupling btw class and helper

Nov 17, 2008 Sprenkle - CS209 4

Analysis Phase

Create an abstract model in client’'s
vocabulary

Strategy:
Identify classes that model (shape) system as set
of abstractions
Determine each class’s purpose, or main
responsibility
member functions
data members
Determine helper classes for each
Help complete responsibilities

Nov 17, 2008 Sprenkle - CS209 5

Analysis Phase Discussion

Expect to iterate
Won't find all classes at first
Especially helpers
Won'’t know all responsibilities
Uncertainty in problem statement
May be concerns that need to be settled
Try to understand requested software system at
level of those requesting software

Rarely one true correct best design

Nov 17, 2008 Sprenkle - CS209 6




Identification of Classes

Potentially model the system

Usually nouns from problem description
Or from domain knowledge

Model real world whenever possible
More understandable software

Helps during maintenance when someone
unfamiliar with system must update/fix code

Nov 17, 2008 Sprenkle - CS209 7

Identifying Responsibilities

Responsibilities convey purpose of class, its
role in system

Questions to Ask:
What are the other responsibilities needed to
model the solution?
Which class should take on this particular
responsibility?
What classes help another class fulfill its
responsibility?

Nov 17, 2008 Sprenkle - CS209 8

Have You Modeled Everything?

Strategy: Role playing
Act as different classes: can you do
everything you want in various scenarios?
Fill in missing classes, responsibilities
Methods: parameters, what returned
Restructure as necessary
No code yet so not actually refactoring
Example use cases/scenarios:
User borrows a video and returns it two days late
User tries to borrow book that is already checked
out

Nov 17, 2008 Sprenkle - CS209 9

Discussion

What else can use cases be used for?

Nov 17, 2008 Sprenkle - CS209 10

Discussion

What else can use cases be used for?
Test Cases

Nov 17, 2008 Sprenkle - CS209 "

Josh Bloch’s
DESIGNING A GOOD API

Nov 17, 2008 Sprenkle - CS209 12




How to Design a Good API

APIs can be among a company's greatest
assets
Customers invest heavily: buying, writing, learning
Cost to stop using an API can be prohibitive
Successful public APIs capture customers
Can also be among company's greatest
liabilities
Bad APlIs result in unending stream of support calls
Public APIs are forever - one chance to get right

Nov 17, 2008 Sprenkle - CS209 13

How Does API Design Relate To This
Class?

Nov 17, 2008 Sprenkle - CS209 14

How Does API Design Relate To This
Class?
You are an API designer
Good code is modular—each module has an API
Useful modules tend to get reused
Once module has users, can’t change API at will
Good reusable modules are corporate assets
Thinking in terms of APIs improves code
quality

Nov 17, 2008 Sprenkle - CS209 15

Characteristics of a Good API

Easy to learn

Easy to use, even without documentation
Hard to misuse

Easy to read and maintain code that uses it
Sufficiently powerful to satisfy requirements
Easy to extend

Appropriate to audience

Nov 17, 2008 Sprenkle - CS209

API DESIGN PROCESS

Nov 17, 2008 Sprenkle - CS209 17

API Design Process

Gather requirements
Eye towards generality
Know what is actually required
Write short specification
Write to API early
Maintain realistic expectations

Nov 17, 2008 Sprenkle - CS209




One-Page Specification

Agility trumps completeness

Bounce spec off as many people as possible
Listen to their input and take it seriously

If you keep the spec short, it's easy to modify

Flesh it out as you gain confidence
Necessarily involves coding

Nov 17, 2008 Sprenkle - CS209 19

Write to Your API Early and Often

Start before you've implemented the API

Saves you doing implementation you'll throw
away

Similar to role playing
Start before you've even specified it properly

Saves you from writing specs you'll throw
away

Continue writing to API as you flesh it out
Prevents nasty surprises
Code lives on as examples, unit tests

Nov 17, 2008 Sprenkle - CS209 20

Maintain Realistic Expectations

Most API designs are over-constrained
You won't be able to please everyone
Aim to displease everyone equally

Expect to make mistakes

A few years of real-world use will flush them out
Expect to evolve API

Nov 17, 2008 Sprenkle - CS209 21

DESIGN PRINCIPLES

Nov 17, 2008 Sprenkle - CS209 22

API Should Do One Thing and Do it Well

Functionality should be easy to explain
If it's hard to name, generally a bad sign
Good names drive development
Be amenable to splitting and merging modules

Nov 17, 2008 Sprenkle - CS209 23

API: As Small As Possible, But No Smaller

API should satisfy its requirements

When in doubt leave it out
Functionality, classes, methods, parameters, etc.
You can always add, but you can never remove

Conceptual weight more important than bulk
Look for a good power-to-weight ratio

Nov 17, 2008 Sprenkle - CS209 24




Implementation Should Not Impact API
Why?

Nov 17, 2008 Sprenkle - CS209 25

Implementation Should Not Impact API

Implementation details
Confuse users
Inhibit freedom to change implementation

Be aware of what is an implementation detail
Do not overspecify the behavior of methods
For example: do not specify hash functions

All tuning parameters are suspect
Don't let implementation details “leak” into API
On-disk and on-the-wire formats, exceptions

Nov 17, 2008 Sprenkle - CS209 26

Minimize Accessibility of Extensibility

Nov 17, 2008 Sprenkle - CS209 27

Minimize Accessibility of Extensibility

Make classes and members as private as

possible

Public classes should have no public fields
With the exception of constants

This maximizes information hiding

Allows modules to be used, understood, built,

tested, and debugged independently

Nov 17, 2008 Sprenkle - CS209 28

Names Matter — API is a Little Language

Nov 17, 2008 Sprenkle - CS209 29

Names Matter — API is a Little Language

Names should be largely self-explanatory
Avoid cryptic abbreviations

Be consistent—same word means same thing
Throughout API, (Across APls on the platform)

Be regular—strive for symmetry
Code should read like prose

if (car.speed() > 2 * SPEED_LIMIT)
generateAlert("Watch out for cops!");

Nov 17, 2008 Sprenkle - CS209 30




Documentation Matters

Nov 17, 2008 Sprenkle - CS209 31

Documentation Matters

Reuse is something that is far easier to say
than to do. Doing it requires both good design
and very good documentation. Even when we
see good design, which is still infrequently, we
won't see the components reused without good
documentation.

-- D. L. Parnas. “Software Aging.” In
Proceedings of 16th International Conference
Software Engineering, 1994

Nov 17, 2008 Sprenkle - CS209 32

Document Religiously

Document every class, interface, method,
constructor, parameter, and exception
Class: what an instance represents
Method: contract between method and its client
Preconditions, postconditions, side-effects
Parameter: indicate units, form, ownership

Document state space very carefully

Nov 17, 2008 Sprenkle - CS209 33

Consider Performance Consequences of
API Design Decisions

Nov 17, 2008 Sprenkle - CS209 34

Consider Performance Consequences of
API Design Decisions
Bad decisions can limit performance
Making type mutable
Providing constructor instead of static factory
Using implementation type instead of interface
Do not warp API to gain performance
Underlying performance issue will get fixed, but
headaches will be with you forever
Good design usually coincides with good
performance

Nov 17, 2008 Sprenkle - CS209 35

Effects of API Design Decisions on
Performance are Real and Permanent
Component.getSize() returns
Dimension
Dimension is mutable
Each getSize call must allocate Dimension
Causes millions of needless object
allocations
Alternative added in 1.2
Old client code still slow

Nov 17, 2008 Sprenkle - CS209 36




