Objectives

Collections
Jar Files
Compiled vs Interpreted

Oct 6, 2008 Sprenkle - CS209 1

Review

What interfaces/data structures have we
been talking about in Java?

Why do we use Interface objects instead of
Implementations in our programs?
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Review: Collections Framework

Interfaces

Abstract data types that represent collections

Collections can be manipulated independently of
implementation

Implementations
Concrete implementations of the collection interfaces
Reusable data structures

Algorithms

Methods perform useful computations on collections,
e.g., searching and sorting

Polymorphic: same method can be used on many
different implementations of collection interface
Reusable functionality
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Traversing Collections

For-each loop:

for (Object o : collection)
System.out.println(o);
Valid for all Collections

Maps (and its subclasses) are not
Collections

But, Map’s keySet() is a Set and values()
isaCollection
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Traversing Collections: Iterator

Java Interface
<E> next()
Get the next element
boolean hasNext()
Are there more elements?
void remove()
Remove the previous element

Only safe way to remove elements during
iteration

Not known what will happen if remove elements in
for-each loop
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Iterator: Like a Cursor
Always between two elements

Element(0) Element(1) Element(2) Element(3)

Index: 0 1 2

w
S
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Polymorphic Filter Algorithm

static void filter(Collection c) {
Iterator i = c.iterator();
while(C i.hasNext(Q) ) {
// if the next element does not
// adhere to the condition, remove it
if (lcond(i.next())) {
i.remove();
}

3
3
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Traversing Lists: ListIterator

Methods to traverse list backwards
listIterator(int position)
Pass in size() as index to get at end of list
hasPrevious()
previous()
Used for insertion/modification/deletion in
linked lists in the middle

(2) El (3)

T
Index: 0 1 2 3 4
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Enumeration

Legacy class
Similar to Iterator
boolean hasMoreElements()
Object nextElement()
Longer method names
Doesn’t have remove operation
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Synchronized Collection Classes

For multiple threads sharing same collection

Slow down typical programs
Avoid for now

e.g., Vector, Hashtable
See java.util.concurrent
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Utility Class: Collections

Similar to Arrays class
Contains methods for
Binary searching
Sorting
Min/max finding (“extremes”)
Reversing
Shuffling
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LANGUAGE COMPARISON
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Language Comparison

Java Python
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Language Comparison
Java Python
Object-oriented Object-oriented

Statically typed Dynamically typed
Compiled Interpreted

Pros and cons of using each?
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Compiling vs Interpreted

What is a benefit of compiling (versus
interpreted languages)?
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Compiling

Translates high-level programming language to
machine code or byte code

Java: .class - bytecode
Compiler optimization techniques

Generate efficient bytecode/machine code

Examples: get rid of unused local variables,
transform loops

In Java: static typing for additional gains
Can execute that code multiple times
Performance gain

Interpreted = have to re-verify the code each time
executed

What can we do in Python that we can’t do in Java?
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Compiled vs Interpreted Languages

Compiled Interpreted
Efficient machine/byte Faster development
code generation /prototyping

Performance gains
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Midterm Questions?
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Midterm Notes

See midterm prep guide on class web site
Terminology heavy
Length of exam
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