Objectives

Exceptions
Files
Streams

Sept 26, 2008 Sprenkle - CS209 1

Review

Permissions
What are the categories who permissions are
applied to?
What types of permissions can be granted?
Exceptions
What are the two types of exceptions?
What is one way to deal with exceptions?

Sept 26, 2008 Sprenkle - CS209 2

n . Partof java.lang
ackage

Exception Classificatio

Throwable

/\

Error Exception
Unchecked

IOException ) )
RuntimeException

Checked
Unchecked
Checked: All non- .
RuntimExceptions SQLException
Checked
Sept 26, 2008 Sprenkle - CS209 3

Factorial Alternatives

public static double factorial( int x ) {
if(x <0)
return 0.0;
double fact = 1.0;
while( x > 1) {

fact *= x;
X-=3
return fact;
Sept 26, 2008 Sprenkle - CS209 4

Factorial Alternatives

public static double factorial( int x ) {
if(Cx<0)
throw new IllegalArgumentException("x
must be >= 0");
double fact = 1.0;
while( x > 1) {
fact *= x;
X==3

Could also use assert

return fact; More later

What are the pros and cons of these approaches?

Sept 26, 2008 Sprenkle - CS209 5

A More Descriptive Exception

Four constructors for all Exception classes
Default (no parameters)
Takes a String message

Describe the condition that generated this
exception more fully

2 more

if (num_read < num_bytes) {
String problem = “I read “ + num_read +
“ when I should have read ” + num_bytes;
throw new EOFException(problem);

Sept 26, 2008 Sprenkle - CS209 6




Creating Our Own Exception Class

The EOFException class described the
error our method encountered well
Not always the case

Many exceptions derived from IOException
but plenty more conditions

If you cannot find a predefined Java
Exception class that describes your
condition, make a new Exception class!

Sept 26, 2008 Sprenkle - CS209 7

Catching Exceptions

After we throw an exception, some part of
our program needs to catch it

Knows how to deal with the situation that
caused the exception

Receives it
Handles the problem
Hopefully gracefully, without exiting

Sept 26, 2008 Sprenkle - CS209 9

Creating Our Own Exception Class

public class FileFormatException extends IOException {
public FileFormatException()
{

¥ What happens in this method implicitly?

public FileFormatException(String gripe) {
super(gripe);

Can now throw exceptions of type
FileFormatException

Sept 26, 2008 Sprenkle - CS209 8

The try/catch Block

The simplest way to catch an exception is to
use a try/catch block

Simplest form of this block looks like:

try {
code;
more code;

}
catch (ExceptionType e) {

error code for ExceptionType;
}

Sept 26, 2008 Sprenkle - CS209 10

Try/Catch Block

try {
code;
more code;

catch (ExceptionType e) {
error code for ExceptionType;
}

The code in the try block runs first

If try block completes without an exception,
catch block(s) are skipped

If the try code generates an exception, a catch
block runs

Remaining code in the try block is skipped

Sept 26, 2008 Sprenkle - CS209 "

The try/catch Block

If code inside try block

try { ) does not throw an
code; exception of
more code; .
ExceptionType,
catch (ExceptionType e) { catch block is skipped
error code for
ExceptionType X
If an exception of a type

other than
ExceptionType is
thrown inside try block,
method exits immediately
and the program dies

Sept 26, 2008 Sprenkle - CS209 12




The try/catch Block

try {

catch

catch

code;
more code;

(ExceptionType e) {
error code for
ExceptionType

(ExceptionType2 e) {
error code
for ExceptionTypel2

You can have more than
one catch block
To handle > 1 type of
exception
If ExceptionTypel does
not catch exception, falls
to ExceptionType2,
and so forth

Run the first matching
catch block

Can catch any type with Exception e
but won’t have customized messages

Sept 26, 2008

Sprenkle - CS209 13

Try/Catch Example

public void read(BufferedReader in) {
try {

boolean done = false;

while (!done) {
String line=in.readlLine();
// this could throw IOException!
if (line == null)

done = true;

}

}
catch (IOException exp) {
exp.printStackTrace();

: }
Prints out stack trace to method call
that caused the error —
Sept 26, 2008 Sprenkle - CS209 14

Try/Catch Example

public void read(BufferedReader in) {

try {

boolean done = false;
while (!done) {
String line=in.readlLineQ);
// this could throw IOException!
if (line == null)
done = true;

3

}
catch (I0Exception exp) {
exp.printStackTrace();

More precise try/catch may help pinpoint error

Sept 26, 2008

But could result in messier code

Sprenkle - CS209 15

Stack Trace Example

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

How helpful is this output?
How user friendly is it?

Sept 26, 2008 Sprenkle - CS209 16

Stack Trace Example

java.io.FileNotFoundException: fred.txt
at java.io.FileInputStream.<init>(FileInputStream.java)
at java.io.FileInputStream.<init>(FileInputStream.java)
at ExTest.readMyFile(ExTest.java:19)
at ExTest.main(ExTest.java:7)

« Useful for debugging your code
» Generate/display user-friendly errors in finished

How helpful is this output?
How user friendly is it?

product

Sept 26, 2008

Sprenkle - CS209 17

The finally Block

Can add a finally block after all possible
catch blocks
Code in finally block always runs after the
code in try and/or catch blocks

After try block finishes; or if an exception
occurs, after the catch block finishes

Allows you to clean up or do maintenance
before the method ends (one way or the
other)

E.g., closing files or database connections

Sept 26, 2008 Sprenkle - CS209 18




Practice: try/catch/finally Blocks

— Which statements run if:
statementl; Neither statementl nor
) statementZ; statement2 throws an
catch (EOFException e) { exception
statement3; statementl throws an
3 statement4; EOFException
finally { statement2 throws an
statement5; EOFException
} statementl throws an
IOException

Sept 26, 2008 Sprenkle - CS209 19

What to do with a Caught Exception?

We dump the stack after the exception occurs
What else can we do?

Often, the best answer is to do nothing but

report the problem

If an exception occurs in the readLine()

method, our readData() method should

probably pass up to whoever called it

Instead of catching this exception, advertise that

the readData() method can throw an

IOException

Let whoever calls the readData() method catch and
handle the exception

Sept 26, 2008 Sprenkle - CS209 20

Methods Throwing Exceptions

API documentation tells you if a method can
throw an exception

If so, you must handle it
If your method could possibly throw an
exception (by generating it or by calling
another method that could), advertise it!

If you can’t handle every error, that's OK.. .let
whoever is calling you worry about it

However, they can only do that if you advertise
the exceptions you can’t deal with

Sept 26, 2008 Sprenkle - CS209 21

Programming with Exceptions

Exception handling is slow

Use one big try block instead of nesting
try -catch blocks too deep

Don't ignore exceptions (e.g., catch block
does nothing)

Better to pass them along to higher calls

Sept 26, 2008 Sprenkle - CS209 22

Benefits of exceptions?

Sept 26, 2008 Sprenkle - CS209 23

Benefits of Exceptions

Force error checking/handling

Otherwise, won’t compile

Does not guarantee “good” exception handling
Ease debugging

Stack trace

Sept 26, 2008 Sprenkle - CS209 24




FILES

Sept 26, 2008 Sprenkle - CS209 25

java.io.File Class

Represents a file on the disk
Provides functionality such as
Storage of the file on the disk
Determine if a particular file exists
When file was last modified
Rename file
Remove/delete file

Sept 26, 2008 Sprenkle - CS209 26

Making a File Object

Simplest constructor takes full file name
(including path)

If don’t supply path, Java assumes current
directory (.)

\File fl = new File(“chicken.data”); \

Creates a File object representing a file named
“chicken.data” in the current directory

Does not create a file with this name on disk

Sept 26, 2008 Sprenkle - CS209 27

Making a File Object

File object represents a file with that
pathname on the disk

Even if file does not exist
File's exists() method

Determines if a file exists on the disk

Create a File object that represents file and call
exists() method.

Sept 26, 2008 Sprenkle - CS209 28

Files and Directories

A File object can represent a file or a
directory
Directories are special files in most modern
operating systems
Use isDirectory() and/or isFile() to
see what type of file is File object
represents

Sept 26, 2008 Sprenkle - CS209 29

More File Constructors
String for the path, String for filename

File f2 = new File(
“/home/courses/cs209/datafiles”,”chicken.data”);

File for directory, String for filename

File dir= new File(“/home/courses/cs209/datafiles”);
File f4 = new File(dir, “chicken.data”);

Sept 26, 2008 Sprenkle - CS209 30




“Break” any of Java’s Principles?

Sept 26, 2008 Sprenkle - CS209 31

Not Portable

Accessing the file system is inherently not
portable

In Windows, paths are “c:\\dir”

In Unix, paths are “/home/courses/dir’
Relies on underlying file system/operating
system to perform actions

Sept 26, 2008 Sprenkle - CS209 32

Handling Portability Issues

Fields in File class
static separator
Unix: “/”
Windows: “\\’ Why two \\?
static pathSeparator
For separating a list of paths
Unix: “”
Windows: “;”
Use relative paths, with separators

java.io.File Class

25+ methods
Manipulate files and directories
Creating and removing directories
Making, renaming, and deleting files
Information about file (size, last modified)
Creating temporary files

See online APl documentation

FileTest.java
Sept 26, 2008 Sprenkle - CS209 34

Sept 26, 2008 Sprenkle - CS209 33
Sept 26, 2008 Sprenkle - CS209 35

Streams

Java handles input/output using streams,
which are sequences of bytes

.

3
®

s Reads
Astream~” .00 L

input stream: an object from which we can
read a sequence of bytes

Abstract class: java.io.InputStream

Sept 26, 2008 Sprenkle - CS209 36




Streams

Java handles input/output using streams,
which are sequences of bytes

Writes Inrf
Program ©

3

o
i
A stream <~ °n

output stream: an object to which we can write
a sequence of bytes
Abstract class: java.io.OutputStream

Sept 26, 2008 Sprenkle - CS209 37

Console I/0

Output:

System.out, which is a PrintStream object
Input

System.in is an InputStream

Throws exceptions if format of input data is not
correct
Handle in try/catch

Sept 26, 2008 Sprenkle - CS209 38

Java Streams

MANY (80+) types of Java streams
In java.io package
Why streams?
Information stored in different sources is
accessed in essentially the same way
Example sources: file, on a web server across the
network, string
Allows same methods to read or write data,
regardless of its source

Create an InputStream or QutputStream of
the appropriate type

Sept 26, 2008 Sprenkle - CS209 39

Opening & Closing Streams

Streams are automatically opened when created

Close a stream by calling its close() method
Close a stream as soon as object is done with it
Free up system resources

Sept 26, 2008 Sprenkle - CS209 40

Reading & Writing Bytes

Parent class: InputStream
abstract int read(): reads one byte from
the stream and returns it

Concrete input stream classes override

read() to provide appropriate functionality
e.g., FileInputStream class: read() reads one
byte from a file

Similarly, OutputStream class has abstract

write() to write a byte to the stream

Sept 26, 2008 Sprenkle - CS209 41

Reading & Writing Bytes

read() and write() are blocking operations
If a byte cannot be read from the stream, the
method waits (does not return) until a byte is read
isAvailable() allows you to check the
number of bytes that are available for reading
before you call read()

int bytesAvailable = System.in.isAvailable();
if (bytesAvailable > 0)
System.in.read(byteBuffer);

Sept 26, 2008 Sprenkle - CS209 42




More Powerful Stream Objects

DataInputStream class

Directly reads Java primitive types through
method calls such as readDouble(),
readChar(), readBoolean()

DataOutputStream class

Directly writes Java primitive types with
writeDouble(), writeChar(),

Sept 26, 2008 Sprenkle - CS209 43

File Input and Output Streams

FileInputStream: provides an input
stream that can read from a file
Constructor takes the name of the file:

FileInputStream fin = new
FileInputStream(“chicken.data”);

Or, uses a File object ...

File inputFile = new File(“chicken.data”);
FileInputStream fin = new FileInputStream(inputFile);

FileTest.java
Sept 26, 2008 Sprenkle - CS209 44

Filtered Streams

FileInputStream has no methods to read
numeric types

DataInputStream has no methods to read
from a file

Java allows you to combine two types of
streams into a connected stream

Sept 26, 2008 Sprenkle - CS209 45

Connected Streams

Think of a stream as a “pipe”

FileInputStream knows how to read from a file
DataInputStream knows how to read an
InputStream into useful types

Connect the out end of the FilelnputStream to the
in end of the DatalnputStream...

char
file FilelnputStream DatalnputStream

™\ double

Data Source stream Filtered Stream

DataIODemo. java
Sept 26, 2008 Sprenkle - CS209 46

Filtered Streams vs Data Source Streams

Subclasses of FilterInputStreamor
FilterOutputStream
Always contains another stream
Adds functionality to other stream
Automatically buffered 10
Automatic compression
Automatic encryption
Automatic conversion between objects and bytes
As opposed to Data source streams
communicate with a data source
file, byte array, network socket, or URL

Sept 26, 2008 Sprenkle - CS209 47

Filtered Streams: Reading from a file

If we wanted to read numbers from a file
FileInputStream reads bytes from file
DataInputStream handles numeric type reading

Connect the DataInputStream to the

FileInputStream
FileInputStream gets the bytes from the file and
DataInputStreamreads them as assembled types

FileInputStream fin = new
FileInputStream(“chicken.data”);
DataInputStream din = new
DataInputStream(fin); “wrap”’ fin indin
double numl = din.readDouble();

Sept 26, 2008 Sprenkle - CS209 48




Aside: StringBuffers vs Strings

Strings are “read-only” or immutable
Use StringBuffer to manipulate a String

Instead of creating a new String using
String str = prevStr + “ more!”;

Use

StringBuffer str = new StringBuffer( prevStr );
str.append(“ more!”);

Many StringBuffer methods, including
toString() to get the resultant string back

Sept 26, 2008 Sprenkle - CS209 49

Buffered Streams

Use a BufferedInputStream class
object to buffer your input streams
A pipe in the chain that adds buffering
Speeds up access

DataInputStream din = new DataInputStream (
new BufferedInputStream (
new FileInputStream(“chicken.data”)));

Sept 26, 2008 Sprenkle - CS209

A More Connected Stream

FileInputStream reads bytes from the file
BufferedInputStream buffers bytes

speeds up access to the file
DataInputStream reads buffered bytes as
types

Sept 26, 2008 Sprenkle - CS209 51

- char
file FilelnputStream [EIECsNEqeEwll DatalnputStream N
double




