
12/9/09

1

•  Project: Do-over Preliminary Implementation
Demo

•  Design discussion – Assignment 10,
Assignment 11

•  Final Implementation
 Team deadline?
 Decision on 3 extensions?

•  “Post-mortem Analysis” – Due Dec 18, 5 p.m.
 Overview
 Planning
 Status/Details
 Conclusions
 Collaboration
 Future Work

•  Many similar critiques, solutions
 Lack of comments
 Long methods

•  Extract method
 Difficult to test!

•  Easier with extracted methods

•  Many variations on designs
 Even though a small project/assignment, there

are lots of design decisions!

•  The majority of the bin-fitting process was handled
inside the main method. This probably made the
code easy to write, but is disadvantageous for a
number of reasons:
 Readability: …
 Maintainability: …
 Testing: unit testing does not break down into small

pieces to test. There is just one big main method
 Debugging: …

12/9/09

2

•  Added a static field “ID” to track the ID of a disk
rather than wasting the extra code lines of having
an extra constructor to specify the ID and forcing
[others to] track the IDs of the disks it is creating…

public Disk(int id) {	
	this();	
	myId = id;	

}	

What are the tradeoffs to this approach?

public Disk() {	
	myId = idCount++;	

}	

•  Added a static field “ID” to track the ID of a disk rather
than wasting the extra code lines of having an extra
constructor to specify the ID and forcing [others to]
track the IDs of the disks it is creating…

•  The downside of this approach is that we can’t directly
specify what we want the ID of a disk to be. On the
other hand, it is a much more direct and efficient way to
ensure that we are always getting a unique set of IDs
for a set of disks.

public Disk(int id) {	
	this();	
	myId = id;	

}	

public Disk() {	
	myId = idCount++;	

}	

•  One of the cons of [my refactored] solution I
can see is that the generateResults()
method, [describes issue…]

public static String generateResults() {	
 System.out.println("worst-fit decreasing method");	
 System.out.println("number of pq used: " + pq.size());	
 while (!pq.isEmpty()) {	
 System.out.println(pq.poll());	
 }	
 System.out.println();	
}	

What is the issue? Why is it a problem?

•  One of the cons of [my refactored] solution I
can see is that the generateResults()
method, [describes issue…]

public static String generateResults() {	
 System.out.println("worst-fit decreasing method");	
 System.out.println("number of pq used: " + pq.size());	
 while (!pq.isEmpty()) {	
 System.out.println(pq.poll());	
 }	
 System.out.println();	
}	

Unexpected side effect of method
Symptom of a poorly designed API

•  I chose to make Bins a separate class only
responsible for adding files and creating
disks. This makes the code more extensible
for future use…

•  Bins was trying to do too much with reading
from a file so I moved this to the BinsRunner
files since the important part about Bins is
not how it gets the data, but what it does
once it has the data.

•  I chose to make Bins a separate class only
responsible for adding files and creating
disks. This makes the code more extensible
for future use…

•  Bins was trying to do too much with reading
from a file so I moved this to the BinsRunner
files since the important part about Bins is
not how it gets the data, but what it does
once it has the data.

12/9/09

3

•  I thought about how this program is likely to
change. Right now we have two different methods
to fit files onto disks; however, these two are
certainly not the only two methods, and in the future
perhaps we will want to use other methods in the
Bins class. For this reason, I decided to make the
fitFilesToDisk method abstract in the Bins class and
to make a WorstFit class that inherits from the Bin
class….

•  After looking back over the code and the changes
I’ve made, I think there will almost always be more
changes possible. For example, the code for the
different heuristic types could be extracted to a
separate class thats [sic] only job is to define the
heuristics.

•  Also, the Disk class could be changed to
accommodate any type of storage media, not just
DVDs.

@Test	
public void TestWorstFit(){	
	List<Integer> results = Bins.readData("data/

example.txt");	
	Method t = Bins.worstFit(results, "test fill");	
	assertEquals(t.getName(), "test fill");	
	assertEquals(t.getTotal(), 1950000);	
	PriorityQueue<Disk> pq = t.getPq();	
	assertEquals(pq.poll().toString(), "2\t850000:\t

150000");	
	assertEquals(pq.poll().toString(), "0\t100000:\t

700000 200000");	
	assertEquals(pq.poll().toString(), "1\t100000:\t

800000 100000");	
}	

What is an issue in this code?	

@Test	
public void TestWorstFit(){	
	List<Integer> results = Bins.readData("data/

example.txt");	
	Method t = Bins.worstFit(results, "test fill");	
	assertEquals(t.getName(), "test fill");	
	assertEquals(t.getTotal(), 1950000);	
	PriorityQueue<Disk> pq = t.getPq();	
	assertEquals(pq.poll().toString(), "2\t850000:\t

150000");	
	assertEquals(pq.poll().toString(), "0\t100000:\t

700000 200000");	
	assertEquals(pq.poll().toString(), "1\t100000:\t

800000 100000");	
}	

Problem: Difficult to test, relies on formatted String
Fix: Add better equals method for Disk	

Rule of Thumb: when you’re having trouble
testing, refactor to make it easier to test.	

• Which API would you prefer to use as a
user?

/** @param arg file name	
 * @return String list of file sizes from text file	
 */	
public static List<Integer> readData(String arg)	

/** @param arg Scanner that reads data from a text file	
 * @return String list of file sizes from text file	
 */	
public static List<Integer> readData(Scanner arg)	

•  Some of your refactored classes had all
static methods

• What are the tradeoffs of having a class with
all static methods versus creating a class
that can be instantiated?

12/9/09

4

Improving Solutions

Original Solution

Static Methods

Bins Class

Abstract Bins Class
 - Heuristics Changing

Expected solution:

Other dimensions within here

•  On Sakai
  Anonymous  I’ll see a submission number
  At the end, it says “Submit for Grading”, but you won’t be

graded
  Won’t be viewed until after grades submitted

•  Let me know if anything doesn’t work, and we’ll switch to
paper

•  Two evaluations:
  “Course Evaluation”
  “Supplemental Evaluation”—Specific to this course and

improving for next time
•  “Rationale” box is for comments related to the question
•  Incentive: all four complete both surveys: 5% off the total

points possible for the assignments grade

