Objectives

Object-oriented programming in Java
Constructors
Default constructors
Garbage collection
Static methods, variables
Inherited methods

Sept 21, 2009 Sprenkle - CS209 1

Danger of Semicolons
What does this code do?

if (x>4);
System.out.println(“x is

»

+ X);

Sept 21, 2009 Sprenkle - CS209 2

Danger of Semicolons
What does this code do?

if (x>4);
System.out.println(“x is

7+ X
; is a valid statement

Print statement always executes
Indentation doesn’t matter

Sept 21, 2009 Sprenkle - CS209 3

Review
Why OO programming?
What are its components?
What's wrong with “white-box” programming?
What is the syntax for defining a method?
What is the syntax for defining a constructor?

Sept 21, 2009 Sprenkle - CS209 4

Review: Objects

How object does something doesn’t matter
What object does matters (its functionality)
What object exposes to other objects
Referred to as “black-box programming”

° y
e [J
Object

+ Can see and manipulate *Has public interface that
object’s internals others can use
« Hides state from others

Sept 21, 2009 Sprenkle - CS209 5

Review: General Java Class Structure

public class ClassName {

/] mmmmmme INSTANCE VARTABLES ---------------
// define variables that represent object’s state
private int inst_var;

/) mmmmmmm CONSTRUCTORS ----==-====----=
public ClassName() {
// initialize data structures

}

/) mmmmmmm e METHODS ------------
public int getInfo() {

return inst_var; Note: instance variables

are private and
} methods are public

Sept 21, 2009 Sprenkle - CS209 6

More on Constructors

A class can have more than one constructor
Whoa! Let that sink in for a bit

A constructor can have zero, one, or multiple
parameters

A constructor has no return value

A constructor is always called with the new
operator

Sept 21, 2009 Sprenkle - CS209 7

Overloading

Allowing > 1 constructor (or any method) with

the same name is called overloading
Constraint: Each of the methods that have the
same name must have different parameters

“different” > Number and/or type

Compiler handles overload resolution
Process of matching a method call to the correct
method by matching the parameters

No function overloading in Python
Why wasn't that possible?

Sept 21, 2009 Sprenkle - CS209 overload.py s

Default Initialization

If instance field is not explicitly set in
constructor, automatically set to default value
Numbers are set to zero
Booleans are set to false
Obiject variables are set to hull
Local variables are not assigned defaults
Do not rely on defaults
Code is harder to understand
Set all instance fields in the constructor(s)

Sept 21, 2009 Sprenkle - CS209 9

Explicit Field Initialization

If more than one constructor needs an
instance field set to same value, the field can
be set explicitly in the field declaration

class Chicken {
private String name = “”;

Sept 21, 2009 Sprenkle - CS209 10

Explicit Field Initialization

Or in a static method call

class Employee {
private int id = assignID(Q);

private static int assignID() {
int r = nextID;

nextID++;
return r;
}
More on static later...
Sept 21, 2009 Sprenkle - CS209 1"

Explicit Field Initialization

Explicit field initialization happens before any
constructor runs

A constructor can change an instance field
that was set explicitly

If the constructor does not set the field
explicitly, explicit field initialization is used

Sept 21, 2009 Sprenkle - CS209 12

final keyword

An instance field can be final

final instance fields must be set in the
constructor or in the field declaration
Cannot be changed after object is constructed

private final String dbname = “invoices”;
private final String id;

public MyObject(String id) {
this.id = id;
}

Sept 21, 2009 Sprenkle - CS209 13

Default Constructor

Default constructor: constructor with no
parameters
If class has no constructors, compiler
provides a default constructor

Sets all instance fields to their default values

However, if a class has at least one
constructor and no default constructor, the
default constructor is NOT provided

Sept 21, 2009 Sprenkle - CS209 14

Default Constructor

Chicken class has one constructor:
Chicken(String name, float weight, float height)
No default constructor

Chicken chicken = new Chicken();
Is a compiler error

Sept 21, 2009 Sprenkle - CS209 15

Constructors Calling Constructors

Can call a constructor from inside another
constructor

The first statement of constructor must be
thisC . . .);
to call another constructor of the same class
this refers to the object being constructed

Sept 21, 2009 Sprenkle - CS209 16

Constructors Calling Constructors

Why would you call another constructor?
Reduce code size/reduce duplicate code

Ex: if name not provided, use default name

Chicken(int height, double weight) {
this(“Bubba”, height, weight);
}

Example: base case constructor

Chicken(int height, double weight) {
thisQ;)
this.height = height; Not in example
this.weight = weight; code online

}

Sept 21, 2009 Sprenkle - CS209 17

Parent Class: Object

Every new class you create automatically
inherits from the 5bj ect class
See Java API
Useful methods to customize your class
String toString(Q)
Returns a string representation of the object
Like Python’s __str__
boolean equals(Object o)
Return true iff this object and o are equivalent
Like Python’s __eq__ or __cmp__
void finalize()
Called when object is destroyed
Clean up resources

Method signature

Sept 21, 2009 Sprenkle - CS209 18

More on toString()

Automatically called when object is passed to
print methods
Default implementation: Class name followed
by @ followed by unsigned hexidecimal
representation of hashcode

Example: Chicken@163b91
General contract: “A concise but informative
representation that is easy for a person to
read”

Document the format

Sept 21, 2009 Sprenkle - CS209 19

Examples: Chicken. java

What would be a good String representation
of a Chicken object?

Look at output before and after toString
method implemented

How would we know if two Chickens are
equal?

Sept 21, 2009 Sprenkle - CS209 20

GARBAGE COLLECTION

Sept 21, 2009 Sprenkle - CS209 21

Memory Management

In C++ and other OOP languages, classes

have explicit destructor methods that run

when an object is no longer used.

Java does not support destructors because it

provides automatic garbage collection
Waits until there are no references to an object

Reclaims memory allocated for the object that is
no longer referenced

Sept 21, 2009 Sprenkle - CS209 22

Garbage Collector

Garbage collector is low-priority thread

Or runs when available memory gets tight
Before GC can clean up an object, the object
may have opened resources

Ex: generated temp files or open network
connections that should be deleted/closed first

GC calls object’s finalize() method
Object’s chance to clean up resources

{Discussion: Benefits and costs of garbage collection?

Sept 21, 2009 Sprenkle - CS209 23

Garbage Collection

Benefits Costs
Fewer memory leaks Garbage collection may
Less buggy code not be as efficient as
But, memory leaks are still explicit freeing memory
possible

Code is easier to write

Sept 21, 2009 Sprenkle - CS209 24

finalize()

Called before garbage collector sweeps away the
object and reclaims the memory
Should not be used for reclaiming resources
i.e., close resources as soon as possible
Why?
When method is called is not deterministic or consistent
Only know it will run sometime before garbage collection
Clean up anything that cannot be atomically cleaned
up by the garbage collector

Close file handles, network connections, database
connections, etc.

Note: no finalizer chaining
Must explicitly call parent object's finalize method

Sept 21, 2009 Sprenkle - CS209 25

Alternatives to finalize

Recall: unknown when finalize will
execute—or if it will execute
Also heavy performance cost
Solution: create your own terminating method
User of class terminates when done using object
Examples: File’s or Window's close
method
May still want a finalize method as a safety
net if user didn’t call the terminate method

Log a warning message so user knows error in
code

Sept 21, 2009 Sprenkle - CS209 26

Can You Spot the Memory Leak?

Handout: MemoryLeak. java
An implementation of a Stack

Try drawing a picture of typical uses of the
class

Sept 21, 2009 Sprenkle - CS209 27

Eliminating the Memory Leak
In pop()

elements[size] = null;

Added benefit: if dereferenced later by
mistake, program will fail immediately with
NullPointerException

Detect error as quickly as possible>Good!
BUT, don’t overcompensate by nulling out
references all the time

Often unnecessary; let variable fall out of scope

Sept 21, 2009 Sprenkle - CS209 28

STATIC METHODS AND
FIELDS

Sept 21, 2009 Sprenkle - CS209 29

Static Methods/Fields

For related functionality/data that isn’t specific
to any particular object

java.lang.Math
No constructor (what does that mean?)
Static fields: PI, E
Static methods:
static double sin(double a)

Sept 21, 2009 Sprenkle - CS209 30

Static Methods

Do not operate on objects
Cannot access instance fields of their class
Can access static fields of their class

Similar to Python functions that are
associated with the class

Sept 21, 2009 Sprenkle - CS209 31

Static Fields

A static field is used when only one such field
per class (not object!)

All objects of a class share one copy of the
static field

Sept 21, 2009 Sprenkle - CS209 32

Static Fields Example

public class Student {
private int 1id;
private static int nextID = 1;

}

Each Student object has an 1id field, but
there is only one nextID field, shared
among all instances of the class

nextID field exists even when no Student
objects have been constructed

‘ How would we use the nextID field to create unique IDs? ‘

Sept 21, 2009 Sprenkle - CS209 33

Static Field Example

One option:

public class Student {
private static int nextID = 1;
private int id = assignID();

private static int assignIDQ) {
int r = nextID;
nextID++;
return r;

Sept 21, 2009 Sprenkle - CS209 34

Constant Static Fields

We used a static field to designate a class
constant:

public class Converter {
public static final double CM2IN = 2.54;

The Math class has a static constant, PI

Value can be accessed using the Math class:
area = Math.PI * r * pr;

Notice we do not need to create an object of
the Math class to use this constant
What is another benefit of a class constant?

Sept 21, 2009 Sprenkle - CS209 35

main()

Most common static method we have seen

main() does not operate on any objects
Runs when a program starts...there are no
objects yet

main() executes and constructs the objects

the program needs and will use
Like the driver function for the program

Sept 21, 2009 Sprenkle - CS209 36

Analyzing java.lang.String

String toUpperCase()

Converts all of the characters in this String to
upper case

static String valueOf(boolean b)

Returns the string representation of the boolean
argument

Discussion: Why can the second method be
static?

Sept 21, 2009 Sprenkle - CS209 37

Static Summary

Static fields and methods are part of a class
and not an object
Do not require an object of their class to be
created in order to use them
When would we make a method static?

When a method does not have to access an
object’s state (fields) because all needed data
are passed into the method

When a method only needs to access static
fields in the class

Sept 21, 2009 Sprenkle - CS209 38

