
10/21/09

1

• Wrap-up Language Comparison
•  Software Development

• Why do we need Comparators?
• What is the benefit of using jar files?
•  How do we create a jar file? Extract the

contents of a jar file?
• What are the 3 preconnected streams?

 How do we access them in Java?

1.  Validates Python programming language
expression(s)
•  Enforces Python syntax rules
•  Reports syntax errors

2.  Executes expression(s)

Interpreter
(python)

Python
expression

Output Executable
bytecode

Only if no
syntax
errors

Compiler
(javac)

•  Lexical analysis, parsing, semantic analysis,
code generation, and code optimization

•  Code optimization: dead code eliminator,
inline expansion, constant propagation, …

Java
file

Java
class

Source code Executable code

•  Translates high-level programming language to
machine code or byte code
  Java: .class  bytecode

•  Compiler optimization techniques
 Generate efficient bytecode/machine code
 Examples: get rid of unused local variables, transform

loops
  In Java: static typing for additional gains

•  Can execute generated code multiple times
 Performance gain
  Interpreted  have to re-verify the code each time

executed

What can we do in Python that we can’t do in Java?

Compiled
-  Spends a lot of time

analyzing and processing
the program

•  Resulting executable is
some form of machine-
specific binary code

•  Computer hardware
interprets (executes)
resulting code

 Program execution is fast
  Efficient machine/byte code

generation
  Performance gains

Interpreted
 Relatively little time spent

analyzing and processing
the program

•  Resulting code is some
sort of intermediate code

•  Another program
interprets resulting code

-  Program execution is
relatively slow

 Faster development/
prototyping

10/21/09

2

Java
•  Object-oriented
•  Statically typed
•  Compiled

Python
•  Object-oriented
•  Dynamically typed
•  Interpreted

Pros and cons of using each?

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

Validate at each step
Goal: A stage is 100%
complete before moving
to next step

• Problems may be
revealed in later stages

• What happens if
problems aren’t revealed
until Acceptance?

Requirements

Design

Implementation

Integration

Acceptance

Release/
Maintenance

Design

Evaluate Implement

Get feedback
from users/
clients

•  Idea: smaller prototypes
to test/fix/throw away
 Finding problems early

costs less
•  In general…

 Break functionality into
smaller pieces

  Implement most
depended-on or highest-
priority features first

Design

Implement Evaluate

Prototypes

Radial dimension: cost
[Boehm 86]

10/21/09

3

•  Purpose/Dimensions
 Functionality
  Interaction
  Implementation

•  Fidelity:
 Low: omits details
 High: closer to finished project
 Multi-dimensional

•  Breadth: % of features covered
 Only enough features for certain tasks

•  Depth: degree of functionality
 Limited choices, canned responses, no error handling

From Nielsen,
Usability Engineering

•  Media: Paper
•  Examples:

storyboard,
sketches, flipbook,
flow diagram

•  Media: Flash, HTML (non-interactive),
PowerPoint, Video

•  Examples: Mockups, Wizard of Oz

Virtual Peer for
Autistic Children

http://articulab.northwestern.edu/projects/samautism/	

•  Design a {method, class, package}
•  Implement the {method, class, package}
•  Test the {method, class, package}
•  Fix the {method, class, package}
•  Deploy the {method, class, package}
•  Get feedback

 Probably will require modifications to design
•  Repeat

•  Consider an online bookstore

Bug!
Customer
sees bug

Site Goes Down
for Maintenance

Customers choose
a competitor’s site

Lose customers’
 confidence

(a.k.a., a fault)

10/21/09

4

•  Beyond their internal testing …
 5 million people beta tested
 60+ years of performance testing
 1 Billion+ Office 2007 sessions

•  Still, users found correctness, stability,
robustness, and security bugs

•  Syntax errors
 Missing semicolon, parentheses

•  Compiler notifies of error
•  Cheap, easy to fix

•  Usually logic errors
•  Expensive to locate, fix

•  “Bug”
 Sounds like it’s just an

annoyance
•  Can simply swat away

 Minimizes potential problems
 Hides programmer’s

responsibility
•  Alternative terms

 Defect
 Fault

•  Test Suite: set of test cases

Input Program Output

Test Case Program
Under Test

Expected
Output ?

pass or fail

•  Tester plays devil’s advocate
 Hopes to reveal problems in the program

using “good” test cases
 Better tester finds than a customer!

•  How is testing different from debugging?

Input Program Output

Test Case

10/21/09

5

• What test cases/input?

Test case Calculator
Program Output

Numerical
Answer

adds, subtracts,
multiplies, divides

Operands,
operators

•  Basic Functionality
 Addition
 Subtraction
 Multiplication
 Division
 Order of operations

•  Invalid Input
  Letters, not-operation

characters (&,$, …)

•  “Tricky” Cases
 Divide by 0
 Negative Numbers
  Long sequences of

operands, operators
 VERY large, VERY

small numbers

