
Lab 4
•Review Lab 3

ØRun Animations!
•Function review

Feb 13, 2024 Sprenkle - CSCI111 1

Lab 3
• Iterative Fibonacci Sequence has been a question on

several students’ internship or job interviews

Feb 13, 2024 Sprenkle - CSCI111 2

Lab 3 Feedback
•Continuing to get tougher in grading

ØPaying more attention to style (e.g., variable names),
efficiency, readability, good output

ØHigh-level descriptions
ØMore strict on adhering to problem specification
ØConstants
ØDemonstrate program more than once if gets input from

user or outcome changes when run again
•Find errors before I do!

Feb 13, 2024 Sprenkle - CSCI111 3

Program Organization

Feb 13, 2024 Sprenkle - CSCI111 4

high-level description
author name

import statements

CONSTANT_DEFNS = …

program_statements ...
program_statements ...
program_statements …

Program Organization

Feb 13, 2024 Sprenkle - CSCI111 5

high-level description
author name

import statements

CONSTANT_DEFNS = …

def main():
 statements…

statements...

def otherfunction():
statement...

Lab 3 Feedback: Common Issues

Feb 13, 2024 Sprenkle - CSCI111 6

operand1=12
for operand2 in range(1, 15):
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

for operand2 in range(1, 15):
 operand1=12
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

vs

Which solution is more efficient (i.e., requires the computer to do less “work”)?

Lab 3 Feedback: Common Issues

Feb 13, 2024 Sprenkle - CSCI111 7

operand1=12
for operand2 in range(1, 15):
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

for operand2 in range(1, 15):
 operand1=12
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

vs

çAdditional assignment each time through loop

Which solution is more efficient (i.e., requires the computer to do less “work”)?

Lab 3 Feedback: Common Issues

Feb 13, 2024 Sprenkle - CSCI111 8

operand1=12
for operand2 in range(1, 15):
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

operand1=12
operand2=0
for x in range(14):
 operand2 = x + 1
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

vs

Which solution is simpler?

Lab 3 Feedback: Common Issues

Feb 13, 2024 Sprenkle - CSCI111 9

operand1=12
for operand2 in range(1, 15):
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

operand1=12
operand2=0
for x in range(14):
 operand2 = x + 1
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

vs

Which solution is simpler?

More code makes solution
more difficult to understand.

Let loop do the work of updating operand2.

Lab 3 Feedback: Common Issues

Feb 13, 2024 Sprenkle - CSCI111 10

operand1=12
for operand2 in range(1, 15):
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

operand1=12
for x in range(1, 15):
 operand2 = x
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

vs

Which solution is simpler?

Lab 3 Feedback: Common Issues

Feb 13, 2024 Sprenkle - CSCI111 11

operand1=12
for operand2 in range(1, 15):
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

operand1=12
for x in range(1, 15):
 operand2 = x
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

vs

Which solution is simpler?

More code makes solution
more difficult to understand.

Let loop do the work of updating operand2.

Animation Feedback
• If moving multiple objects together

ØMove all the objects, then sleep
ØOtherwise, animation looks choppy

•Could use a list with the for loop, as discussed in
several sections in the textbook
ØSimplifies and reduces code

Feb 13, 2024 Sprenkle - CSCI111 12

for object in [myObj1, myObj2, myObj3]:
 object.move()
sleep(.001)

Run Animations

Feb 13, 2024 Sprenkle - CSCI111 13

Review
• What are characteristics of a good function?
• What information should be in a function’s docstring?
• How can we programmatically test functions?
• What is a variable’s scope?

ØWhat are the scope levels?
ØWhat scope do most of the variables we were discussing have?

• What happens when a function reaches a return statement?
• Synthesis: Where do variables implicitly get assigned a value?

Ø Provide examples where a variable’s value is set, but there is no explicit
assignment statement?

Feb 13, 2024 Sprenkle - CSCI111 14

Review: Writing a “Good” Function
• Should be an “intuitive chunk”

ØDoesn’t do too much or too little
ØIf does too much, try to break into more functions

• Should be reusable
• Should have an “action” name
• Should have a comment that tells what the function does

Feb 13, 2024 Sprenkle - CSCI111 15

Review: Writing Comments for Functions
•Good style: Each function must have a comment

ØDescribes functionality at a high-level
ØInclude the precondition, postcondition
ØDescribe the parameters (their types) and the result of

calling the function (precondition and postcondition may
cover this)

Feb 13, 2024 Sprenkle - CSCI111 16

Review: Writing Comments for Functions
• Include the function’s pre- and post- conditions
•Precondition: Things that must be true for function to

work correctly
ØE.g., num must be even

•Postcondition: Things that will be true when function
finishes (if precondition is true)
ØE.g., the returned value is the max

Feb 13, 2024 Sprenkle - CSCI111 17

Review: Testing sumEvens
import test
…
def testSumEvens():

actual = sumEvens(10)
expected = 20
test.testEqual(actual, expected)
test.testEqual(sumEvens(12), 30)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

Feb 13, 2024 Sprenkle - CSCI111 18testSumEvens.py

This is the actual result
 from our function

This is what we expect the result to be

What are other good test cases?

Review: Variable Scope
• Functions can have the same

parameter and variable names as
other functions
Ø Need to look at the variable’s scope to

determine which one you’re looking at
Ø Use the stack to figure out which

variable you’re using
• Scope levels

Ø Local scope (also called function scope)
• Can only be seen within the

function
Ø Global scope (also called file scope)

• Whole program can access
• More on these later

• Know “lifetime” of variable
Ø Only during execution of function
Ø Related to idea of “scope”

• In general, our only global
variables will be constants because
we don’t want them to change
value
Ø e.g., EIEIO

Feb 6, 2023 Sprenkle - CSCI111 19

Evolving General Design Patterns
•Former general design pattern:

1. Optionally, get user input
2. Do some computation
3. Display results

•Now general design pattern:
1. Optionally, get user input
2. Do some computation by calling functions, get results
3. Display results

Feb 6, 2023 Sprenkle - CSCI111 20

Development Process: Bottom-Up

1. Define a function
ØDocument
ØTest the function

Feb 13, 2024 Sprenkle - CSCI111 21

Function1

Focus on just a part of the larger problem

Development Process: Bottom-Up

2. Use the function in
context/ call the function

1. Define a function
ØDocument
ØTest the function

Feb 13, 2024 Sprenkle - CSCI111 22

Function

Function

1

2

Bottom-Up Development Example
1.Define (and document and test) a function that

ØGiven the number of successes and failures
ØReturns the success rate
ØCould be used for a win/loss percentage or for a player’s

stealing percentage
2.Create a program that

ØPrompts for a team’s wins and losses
ØDisplays the team’s win percentage

Feb 13, 2024 Sprenkle - CSCI111 23
winpercent.py

Review: Refactoring
•Refactoring is the process of changing your code to

improve maintainability, reusability, quality, etc.
without significantly changing its functionality

•Examples: renaming variables to be more descriptive,
creating a variable for a “magic number”, …

Feb 13, 2024 Sprenkle - CSCI111 24

Refactoring into Functions
•Symptom: you note that there is some functionality

that would benefit from being a function
•Motivation: improve readability and reusability of your

programs

Feb 13, 2024 Sprenkle - CSCI111 25

Development Process:
Refactoring Functionality into Functions
1. Identify functionality that should be put into a function

ØWhat should the function do?
ØWhat is the function’s input?
ØWhat is the function’s output (i.e., what is returned)?

2. Define the function
3. Test the function programmatically
4. Call the function where appropriate, replacing the former

non-function-ified code
5. Test

Feb 13, 2024 Sprenkle - CSCI111 26

Example: PB & J

Feb 13, 2024 Sprenkle - CSCI111 27

1. Gather materials (bread, PB, J, knives, plate)
2. Open bread
3. Put 2 pieces of bread on plate
4. Spread PB on one side of one slice
5. Spread Jelly on one side of other slice
6. Place PB-side facedown on Jelly-side of bread
7. Close bread
8. Clean knife
9. Put away materials

• Which of these are the “core” part of
making a PB & J sandwich?
• How would you describe the rest of

the parts?

Example: PB & J

Feb 13, 2024 Sprenkle - CSCI111 28

1. Gather materials (bread, PB, J, knives, plate)
2. Open bread
3. Put 2 pieces of bread on plate
4. Spread PB on one side of one slice
5. Spread Jelly on one side of other slice
6. Place PB-side facedown on Jelly-side of bread
7. Close bread
8. Clean knife
9. Put away materials

Example: PB & J as Functions

Feb 13, 2024 Sprenkle - CSCI111 29

1. Gather materials (bread, PB, J, knives, plate)
2. Open bread
3. Put 2 pieces of bread on plate
4. Spread PB on one side of one slice
5. Spread Jelly on one side of other slice
6. Place PB-side facedown on Jelly-side of bread
7. Close bread
8. Clean knife
9. Put away materials

def main():
 prepare()
 makePBJSandwich()
 cleanUpSupplies()
main()

Example: PB & J as Functions, 10 x

Feb 13, 2024 Sprenkle - CSCI111 30

1. Gather materials (bread, PB, J, knives, plate)
2. Open bread
3. Put 2 pieces of bread on plate
4. Spread PB on one side of one slice
5. Spread Jelly on one side of other slice
6. Place PB-side facedown on Jelly-side of bread
7. Close bread
8. Clean knife
9. Put away materials

def main():
 prepare()
 for sandwich in range(10):
 makePBJSandwich()
 cleanUpSupplies()
main()

Refactoring in Practice

1. Copy relevant code from original file into the new file
2. Convert that code into a function in the new file
3. Test the function programmatically
4. Copy other code from original function into new file,

replacing the functionality with a call to the newly
defined function

Feb 13, 2024 Sprenkle - CSCI111 31

Original file with code
to be refactored

New (empty)
program file

Refactoring: An Iterative Process
•As you refactor, you’ll often note new places to

refactor
•Example: after extracting functionality into a function,

you’ll realize that it would be helpful to put the rest of
your code in a main function

Feb 13, 2024 Sprenkle - CSCI111 32

Summary: Development Approaches
•There are several development approaches
•Not mutually exclusive
•Often will switch between them, depending on

circumstances
•As programs grow in size, there is no “one way” to

write code
ØBut there may be better ways to make progress
ØIf you’re stuck, step back and reassess your approach

Feb 13, 2024 Sprenkle - CSCI111 33

Default Values for Parameters
•Can assign a default value to parameters
•We’ve seen this with other functions

ØExample: range has a default start of 0 and step of 1 when
called as range(stop)

Feb 13, 2024 Sprenkle - CSCI111 34

def rollDie(sides=6):
 """
 Given the number of sides on the die (a positive integer),
 simulates rolling a die by returning the rolled value,
 between 1 and sides, inclusive.

If no parameter passed, the number of sides defaults to 6.
 """

Debugging Mantra
•When you’re debugging, a good mantra is

Feb 13, 2024 Sprenkle - CSCI111 35

“I think I'm about to learn something”

Lab 4 Overview
•Calling functions defined in the same program
•Refactoring code
•Modifying function definitions
•Testing functions
•Creating a module
•Writing a program with a function from scratch

Feb 13, 2024 Sprenkle - CSCI111 36

