
Objectives
•Review
•Lab 2

ØProgramming practice

Jan 30, 2024 Sprenkle - CSCI111 1

Feedback on Lab 1
• Overall good
• Notes

Ø Saved output from each program
• With user input, try several different good test cases

ØWant good output
• think about what the user wants to see

ØHigh-level comments
• Describes what the program does

Ø Helps for quick overview when reviewing
Ø Electronic submission

• In directory – looked good!
Ø Fix problems in web pages today so that you can build on them today

Jan 30, 2024 Sprenkle - CSCI111 2

“Good” Output
•Depends on context
•Not necessarily showing how computation was

performed

Jan 30, 2024 Sprenkle - CSCI111 3

50 When i = 7 and j = 2,
i^2+3*j-5 = 50

Rickey Henderson's Stealing %: 80.75818495117748
Lou Brock's Stealing %: 75.34136546184739
Henderson was 5.416819489330095 % more successful at stealing than Brock.

vs

(we can reduce the number of decimal places soon)

Review: Linux Commands
•What is the command to…

ØDetermine which directory you’re in?
ØView the contents of a directory?
ØCreate a directory?
ØCopy a file?
ØDelete a file?

•How do you refer to … your home directory? The
current directory? The parent directory?

Jan 30, 2024 Sprenkle - CSCI111 4

Linux Command: mv
• Used to move or rename a file
•mv <sourcefile> <destination>
• Example usage:

Ø Renames file.py to newfilename.py

ØMoves ~/cs111/file.py to current directory with a new name

Ø If <destination> is a directory, keeps the original source file’s name

• File file.py will now be in cs111/lab1 directory instead of
cs111/

Jan 30, 2024 Sprenkle - CSCI111 5

mv ~/cs111/file.py ~/cs111/lab1/
directory

mv file.py newfile.py

mv ~/cs111/file.py newfilename.py

Linux Command: rm
•Used to delete or remove a file
•rm <filename>
•Example usage:

ØDeletes file.py in the current directory

ØDeletes ~/cs111/lab1/file.py

Jan 30, 2024 Sprenkle - CSCI111 6

rm file.py

rm ~/cs111/lab1/file.py

Review
•What program/application do we use to develop

programs?
ØWhat is the command to execute the application?

•What are the expectations for complete
programs/submissions in this class?

•What is our process for developing programs?
ØIn general and for lab (e.g., what do you need to submit for

your programs?)
Jan 30, 2024 Sprenkle - CSCI111 7

IDLE Review
•Run using idle &

Jan 30, 2024 Sprenkle - CSCI111 8

You can install Python/IDLE on your own computer
to practice between labs.

Development Process for Lab
•Develop in IDLE
1. Create a new file
2. Develop the program
3. Close the shell
4. Run the program again
5. Save output from program

Jan 22, 2024 Sprenkle - CSCI111 9

Submission Expectations
•Code should be easy to read/understand (for someone

familiar with code)
•Executed program should be easy/intuitive for user

ØDescriptive clear output
•Demonstrate program running in .out file

Jan 30, 2024 Sprenkle - CSCI111 10

Review
•How can we make our program interactive with a user?
•What are the two types of division?
•How can we find the remainder from a division?

Jan 30, 2024 Sprenkle - CSCI111 11

Goals of a Good Development Process
•Produces high-quality code

ØCorrect behavior
ØEasy to use
ØEasy to read and understand by another programmer

•Programmer is productive
ØDoesn’t waste time on manual/unnecessary tasks (e.g., user

input until needed)
•Reduces time spent debugging

Jan 30, 2024 Sprenkle - CSCI111 12

Formalizing Process of
Developing Computational Solutions

1. Think about expectations/test cases
Ø “When user enters these values, this should happen.”

2. Create a sketch of how to solve the problem
(the algorithm)

3. Fill in the details in Python
4. Execute the program with good, varied test cases to try to

reveal errors
5. If output doesn’t match your expectation, debug the program

Ø (Where is the problem? How do I fix it?)
6. Iterate to improve your program

Ø Better variable names, better input/output, more efficient, …

Jan 30, 2024 Sprenkle - CSCI111 13

Review: Suggested Approach to Development
• Input is going to become fairly routine.
•Wait to get user input until you have figured out the

rest of the program/algorithm.
•Develop/test without getting input first

ØHardcode values
ØSpeeds up process

•Then, add user input

Jan 30, 2024 Sprenkle - CSCI111 14

Good Development Process
• Working in small chunks helps isolate problems in the code

ØEasier debugging!
• Iterative process encourages refinement, which yields

higher quality
• Entering user input takes time. When you hardcode

values, you can focus on the code working on one case,
and then generalize with user input.

• Making your code easier to read makes it easier to
maintain your mental model as code grows

Jan 30, 2024 Sprenkle - CSCI111 15

Testing

Jan 30, 2024 Sprenkle - CSCI111 16

Honey Badger gets a bad grade in CSCI111

Submission Expectations
•When have user input, your output file contains

multiple runs, demonstrating that your program works
for a variety of test cases

•Suggestion
ØDemonstrate an easy-to-validate test case
ØDemonstrate some “tricky” cases to show that your code

works as expected
•Don’t need to test things that we can’t handle

ØExample: user enters a string instead of a number
Jan 30, 2024 Sprenkle - CSCI111 17

Review: Arithmetic Operations

Jan 30, 2024 Sprenkle - CSCI111 18

Symbol Meaning Associativity

+ Addition Left

- Subtraction Left

* Multiplication Left

/ Division Left

% Remainder (“mod”) Left

** Exponentiation (power) Right

Precedence rules: P E - DM% AS

negation

Associativity matters when
you have the same

operation multiple times

Review: Two Division Operators
/ Float Division
• Result is a float
• Examples:

Ø 6/3 à 2.0
Ø 10/3 à 3.3333333333333335
Ø 3.0/6.0 à 0.5
Ø 10/9 à 1.9

// Integer Division
• Result is an int
• Examples:

Ø 6//3 à 2
Ø 10//3 à 3
Ø 3.0//6.0 à 0
Ø 10//9 à 1

Jan 30, 2024 Sprenkle - CSCI111 19

Design Patterns
•General, repeatable solution to a commonly occurring

problem in software design
ØTemplate for solution

Jan 30, 2024 Sprenkle - CSCI111 20

Design Patterns
•General, repeatable solution to a commonly occurring

problem in software design
ØTemplate for solution

•Example (Standard Algorithm)
ØGet input from user
ØDo some computation
ØDisplay output

Jan 30, 2024 Sprenkle - CSCI111 21

print
Assign.
Assign. x = input("…")

ans = …
print(ans)

Review: Object-Oriented Programming
• What is the term for how we

create a new object?
Ø What is the syntax for that?

• What is the term for how we give
commands to/do operations on
objects?
Ø What is the syntax for that?
Ø What are two types of those

operations we talked about?
• What is the difference between the

methods?
• How does that difference affect how we

use them?

• How do we get access to the code
in graphics.py in our code?

• How can we find out what we can
do to an object?

• Consider a Circle
Ø What can we do to a circle?
Ø What state do you think the Circle

has?
• Create a design pattern for

graphics programs
Ø (What is the template? What should

it contain?)

Jan 30, 2024 Sprenkle - CSCI111 22

Circle Object
• Methods

Ø getCenter()
Ø getRadius()
Ø setFill(<color>)
Ø …

• State
Ø A center
Ø A radius
Ø If it was drawn
Ø Fill color
Ø …

Jan 30, 2024 Sprenkle - CSCI111 23

Circle object
(hides state)

API/methods

Circle Object
• Methods

Ø getCenter()
Ø getRadius()
Ø setFill(<color>)
Ø …

• State
Ø A center
Ø A radius
Ø If it was drawn
Ø Fill color
Ø …

Jan 30, 2024 Sprenkle - CSCI111 24

Circle object
(hides state)

API/methods

circle = Circle(…)

circle.fill_color = “frog”

circle.setFillColor(“frog”)

If state not hidden, could change incorrectly

Method will fail and fill color will not change

Our Graphics Programming Design Pattern
• Import the Graphics Library
• Create the GraphWin
• Repeat:

ØConstruct an object
• May need to construct the objects it needs first
• Set up its color, width, …

ØDraw the object
• At the end of program

ØCall getMouse to make the window stay open until the user clicks
ØThen, call close on the window

Jan 30, 2024 Sprenkle - CSCI111 25

Programming with the Graphics Library
•Algorithm for our program

ØCreate an instance of a 50x100 Rectangle
ØDraw the rectangle
ØShift the instance of the Rectangle class to the right 10 pixels
ØDisplay (print) the x- and y- coordinates of the upper-left

corner of the Rectangle
•Now, implement it!

ØDraw on paper to help you think it through
ØRefer back to example program

Jan 30, 2024 Sprenkle - CSCI111 26rectangle.py

Post-mortem:
Analyzing Problem-Solving Process
•There were gaps in our algorithm

ØWe needed a GraphWin
ØWe needed to import graphics.py
ØDon’t forget to wait for the mouse click and then close

•We didn’t necessarily work linearly
ØIteration often involves working backwards or in circles or …

Jan 30, 2024 Sprenkle - CSCI111 27

Designing for Change
• Sometimes there are “magic numbers” in our code

Ø Example: 200 in board
• Humans have more trouble understanding numbers than

understanding words
• Give our magic numbers meaning by assigning them to variables,

called constants
Ø Example: PI = 3.14159…
ØName constants with all capital letters (and maybe underscores)
Ø Put constants at the top of programs
Ø Conventions makes them easier to identify and change

• Software is soft

Jan 30, 2024 Sprenkle - CSCI111 28

Example: Designing for Change
• First, define the constant
• Base later values on constants

• Why is this a better design?
Ø If want to change the width and keep rest of code working,

update the constant (in one place)
• Using all caps is an indication that this is something that

won’t change during the program’s execution

Jan 30, 2024 Sprenkle - CSCI111 29

WIDTH=200
window = GraphWin(WIDTH, WIDTH*2)
upperRightPoint = Point(0, WIDTH)

Example: Designing for Change
•Example with a non-integer data type
•Consider a color theme for your image

•Later…

Jan 30, 2024 Sprenkle - CSCI111 30

MAIN_COLOR=rgb_color(135, 206, 235)
HIGHLIGHT_COLOR=rgb_color(255, 219, 0)

rect = Rectangle(…)
rect.setFill(MAIN_COLOR)
rect.setOutline(HIGHLIGHT_COLOR)

Lessons from Lab
• Look at examples!

Ø “We were able to do this in that other program. How did we do that?”
ØOn the course schedule page

• Explore!
Ø Try things out in interactive mode
Ø Then, put the ones that work into a script/program

• Testing!
Ø Start with smaller and easy-to-verify tests
Ø Test a variety of inputs

• Follow all of the directions!

Jan 30, 2024 Sprenkle - CSCI111 31

time

understanding

Lab Overview
•Arithmetic problems
•Graphics API Problems

ØUpdate web page

Jan 30, 2024 Sprenkle - CSCI111 32

Sprenkle office hours for Wed
are changed to 12 p.m. to 2 p.m.

