Objectives

More: computer's representations of data types
Encryption

Review

 What is the special name for sequences, like newlines, tabs, ...?

> How do we represent them in strings?

• How does the computer represent data (e.g., numbers and text)?

Review: Representations of Data

- Computer needs to represent different types of data
 Eventually, all boils down to 1s and 0s
- Computer needs to translate between what humans know to what computer knows and back again

Mar 11, 2024

String Representations

- A string is a *sequence* of characters
- Each character is stored as a binary number
- ASCII (American Standard Code for Information Interchange) is one standard encoding for characters
 Limitation: ASCII is based on the English language
 Cannot represent other types of characters
 Handout is just a subset
- Unicode is a new standard handles all languages

Sprenkle - CSCI111 ASCII Table Handout

Translating to/from ASCII

 Translate a character into its ASCII numeric code using built-in function ord

>ord('a') ==> 97

Translate an ASCII numeric code into its character using built-in function chr
 chr(97) ==> 'a'

Sprenkle - CSCI111

ascii_table.py

ascii.py

Mar 11, 2024

ASCII Questions

- Lowercase letters are represented by what range of numbers?
- Uppercase letters are represented by what range of numbers?
- What is the difference between the decimal encoding of 'M' and 'N'?

Between 'm' and 'n'?

Explain why "Zebra" < "aardvarks" evaluates to True</p>

ASCII Questions

- Lowercase letters are represented by what range of numbers?
 ▶97—122
- Uppercase letters are represented by what range of numbers?
 ▶ 65-90
- What is the difference between the decimal encoding of 'M' and 'N'?

```
Between 'm' and 'n' ?
```

```
▶1
```

Explain why "Zebra" < "aardvarks" evaluates to True
 ord("Z") < ord("a")

Translating to/from ASCII

- Translate a character into its ASCII numeric code using built-in function ord
 - >ord('a') evaluates to 97
- Translate an ASCII numeric code into its character using built-in function chr
 chr(97) evaluates to 'a'

Sprenkle - CSCI111

ascii_table.py

ascii.py

8

Encryption

- Process of encoding information to keep it secure
- One technique: Substitution Cipher
 - Each character in message is replaced by a new character

Encryption: Caesar Cipher

- Replace character with a character X places away
 - >X is called the *key*
- Julius Caesar used technique to communicate with his generals

Original Letter	Кеу	Encrypted Letter
'a'	1	ʻb'
'b'	1	ʻc'
'z'	1	'a'

- "Wrap around" within the lowercase letters
- Write program(s) to do this in next lab

Caesar Cipher

Using the ASCII handout, what would be the encoded messages?

Message	Кеу	Encoded Message
apple	5	
zebra	5	
the eagle flies at midnight	-5	

Caesar Cipher

Message	Кеу	Encoded Message
apple	5	fuuqj
zebra	5	ejgwf
the eagle flies at midnight	-5	ocz zvbgz agdzn vo hdyidbco

How would you *decode* an encrypted message?

Mar 11, 2024

Top-Down Design

Break a problem into subproblems Continue process until you reach "base process

Continue process until you reach "base problems" to solve

Next Lab

Write an encoding/decoding program

Encode a message

Give to a friend to decode

Top-Down Design

- 1. Get user input for message and key
- 2. Check that the message and key are valid
- 3. Encrypt the message using the key
- 4. Output the encrypted message

Top-Down Design

- 1. Get user input for message and key
- 2. Check that the message and key are valid
- 3. Encrypt the message using the key
- 4. Output the encrypted message

Break this down: what happens in this step?

Top-Down Design: Encrypt Message

 Go through each character in the message and encrypt it

Top-Down Design: Encrypt Message

Go through each character in the message and encrypt it

Encrypt Letter

- API: Takes a *lowercase letter* and a *key* and returns the encrypted letter
- Write test cases
- Write algorithm
- What are the preconditions for the function?

Caesar Cipher: encryptLetter

- Given a letter and key
- Convert the character to its ASCII value
- Add the key to that value
- Make sure that the new value is a "valid" ASCII value, i.e., that that new value is in the range of lowercase letter ASCII values
 - If not, "wrap around" to adjust that value so that it's in the valid range
- Convert the ASCII value into a character
- Return the encrypted letter

Mar 11, 2024

Top-Down Design: Encrypt Message

Original algorithm: Go through each character in the message and encrypt it

 Now that we have the encryptLetter function, consider the algorithm and implementation of the encryptMessage function

>What are good test cases?

>What are the preconditions for the function

Mar 11, 2024

Caesar Cipher (Partial) Algorithm

- Given a message and key
- For each character in the message
 - Check if the character is a lower case letter
 - If it is, encrypt it
 - Otherwise, it stays that character
- Return the message

Looking Ahead

- Pre Lab 7 due before lab
 - Shorter assignment

Some repetition with last week's assignment, as we go into more depth on some topics

- Think about the encoding/encryption problem and how you will implement it
- Broader Issue: cryptography