
Objectives
•Design Patterns
• Introduction to Object-Oriented Programming
• Introduction to APIs
•Broader Issue: Algorithms

Jan 26, 2024 Sprenkle - CSCI111 1



Review
•How do we get input from a user?

ØGive example of getting input from a user, one where we 
want a string and one where we want a number

•What is the testing process?  What is our goal in 
testing?

•Problem: Averaging two numbers
ØWhat are good test cases?
ØWhat is your algorithm?

Jan 26, 2024 Sprenkle - CSCI111 2



Review: Getting Input From User
•input is a function

ØFunction: A command to do something
•A “subroutine”

•Syntax:
Øinput(<string_prompt>)

•Semantics:
ØDisplay the prompt <string_prompt> in the terminal
ØRead in the user’s input and return it as a string/text

Jan 26, 2024 Sprenkle - CSCI111 3



Review: Getting Input From a User
•Save the result of calling input in a variable

ØEx:

• If you want the assigned variable to be of type int or 
float, we need to convert the result of calling input
ØEx:

Jan 26, 2024 Sprenkle - CSCI111 4

color = input("What is your favorite color? " )

height = eval(input("Enter the height: " ))
width = float(input("Enter the width: "))

Tradeoffs about which function to use to wrap the input. 
For this class, either will be correct to use.



Review: Testing Process

• Test case: 
Ø Input used to test the program
ØExpected output given that input

• Verify if output is what you expected
• Goal: create good test cases that will reveal if there is a 

problem in your code
Jan 26, 2024 Sprenkle - CSCI111 5

Program

Verify output

OutputInput

Expected
Output

Test Case

If output is not what you expect, debug!



Our Development Process
1.Determine algorithm

a) Calculate average: add two numbers together, divide by 2
b) Display average

2. Implement algorithm
a) “Hard-code” two numbers
• Later: get the two numbers as input from user

b) Calculate average
c) Print average

Jan 26, 2024 Sprenkle - CSCI111 6average2.py



Suggested Approach to Development
• Input is going to become fairly routine.
•Wait to get user input until you have figured out the 

rest of the program/problem.
•Consider problem 1 in Lab 1

ØYou “hard coded” the values of i and j
ØYou can (and will) modify the program to get user input for 

those variables in Lab 2.

Jan 26, 2024 Sprenkle - CSCI111 7



Formalizing Process of 
Developing Computational Solutions

1. Think about expectations/test cases
Ø “When user enters these values, this should happen.”

2. Create a sketch of how to solve the problem 
(the algorithm)

3. Fill in the details in Python
4. Execute the program with good, varied test cases to try to 

reveal errors
5. If output doesn’t match your expectation, debug the program

Ø (Where is the problem?  How do I fix it?)
6. Iterate to improve your program

Ø Better variable names, better input/output, more efficient, …

Jan 26, 2024 Sprenkle - CSCI111 8



Formalizing Process of 
Developing Computational Solutions

1. Think about expectations/test cases
Ø “When user enters these values, this should happen.”

2. Create a sketch of how to solve the problem 
(the algorithm)

3. Fill in the details in Python
4. Execute the program with good, varied test cases to try to 

reveal errors
5. If output doesn’t match your expectation, debug the program

Ø (Where is the problem?  How do I fix it?)
6. Iterate to improve your program

Ø Better variable names, better input/output, more efficient, …

Jan 26, 2024 Sprenkle - CSCI111 9



Design Patterns
•General, repeatable solution to a commonly occurring 

problem in software design
ØTemplate for solution

Jan 26, 2024 Sprenkle - CSCI111 10



Design Patterns
•General, repeatable solution to a commonly occurring 

problem in software design
ØTemplate for solution

•Example (Standard Algorithm)
ØGet input from user
ØDo some computation
ØDisplay output

Jan 26, 2024 Sprenkle - CSCI111 11

print
Assign.
Assign. x = input("…")

ans = …
print(ans)



Programming Paradigm: Imperative
•Most modern programming languages are imperative
•Have data (numbers and strings in variables)
•Perform operations on data using operations, such as + 

(addition and concatenation)
•Data and operations are separate

•Add to imperative: object-oriented programming

Jan 26, 2024 Sprenkle - CSCI111 12



OBJECT-ORIENTED PROGRAMMING

Jan 26, 2024 Sprenkle - CSCI111 13



Object-Oriented Programming
•Program is a collection of objects
•Objects combine data and methods together
•Objects interact by invoking methods on other objects

ØMethods perform some operation on object

Jan 26, 2024 Sprenkle - CSCI111 14



Object-Oriented Programming
•Program is a collection of objects
•Objects combine data and methods together
•Objects interact by invoking methods on other objects

ØMethods perform some operation on object

Jan 26, 2024 Sprenkle - CSCI111 15

Object o of
type X

Hides 
internal data

o.method()

Optionally may return 
something back



Object-Oriented Programming
•We’ve been using objects--just didn’t call them objects
•For example: str is a data type (or class)

ØWe created objects of type (class) string
•animal = "cow"
•coursename = "csci111"

Jan 26, 2024 Sprenkle - CSCI111 16

memory

Objects of 
type str

Variable 
names/

identifiers

"cow"

"csci111"

animal

courseName



Example of OO Programming Abstraction
•Think of a smart phone– It's an object
•What can you do to a phone?

Jan 26, 2024 Sprenkle - CSCI111 17



Example of OO Programming Abstraction
•Think of a smart phone– it’s an object
•What can you do to a phone? Those are methods

ØTurn it on/off
ØOpen applications
ØMake a phone call
ØMute it
ØUpdate settings
Ø…

•You don't know how that operation is being done (i.e., 
implemented)
ØJust know what it does and that it works

Jan 26, 2024 Sprenkle - CSCI111 18

methods



Example of OO Programming Abstraction
• A smart phone is an object
•Methods you can call on your smart phone:

ØTurn it on/off
ØOpen applications
ØMake a phone call
ØMute it
ØUpdate settings
Ø…

•SmartPhone is a class, a.k.a., a data type
ØMy smart phone (identified by myPhone) is an object of type 
SmartPhone

ØCall the above methods on any object of type SmartPhone



Object-Oriented Programming
•Objects combine data and methods together

Jan 26, 2024 Sprenkle - CSCI111 20

Object o of
type X

Hides internal data 
structures and 
implementation

o.method()

Optionally may return 
something back

Provides interface (methods) that 
users interact with

Use an Application Programming Interface (API)
to interact with a set of classes.



Class Libraries
•Python provides libraries of classes

ØDefines methods that you can call on objects from those 
classes

Østr class provides useful methods
•More on that later

•Third-party libraries
ØWritten by non-Python people
ØCan write programs using these libraries too

Jan 26, 2024 Sprenkle - CSCI111 21



Using a Graphics Module/Library
•Allows us to handle graphical input and output

ØExample output: Pictures
ØExample input: Mouse clicks

•Defines a collection of related graphics classes
•Not part of a standard Python distribution

ØNeed to import from graphics.py
•Use the library to help us learn object-oriented (OO) 

programming 

Jan 26, 2024 Sprenkle - CSCI111 22



USING A GRAPHICS MODULE

Jan 26, 2024 Sprenkle - CSCI111 23



Using a Graphics Module/Library
•Handout describes how to use the various classes

ØConstructor is in bold
•Creates an object of that type

ØFor each class, lists some of their methods and parameters
ØDrawn objects have some common methods
•Listed at end of handout

•Known as an API
ØApplication Programming Interface

Jan 26, 2024 Sprenkle - CSCI111 24



Example of Output

Jan 26, 2024 Sprenkle - CSCI111 25



Using the Graphics Library
• In general, graphics are drawn on a canvas

ØA canvas is a 2-dimensional grid of pixels

•For our Graphics library, our canvas is a window
ØSpecifically an instance of the GraphWin class
ØBy default, a GraphWin object is 200x200 pixels

Jan 26, 2024 Sprenkle - CSCI111 26



A GraphWin Object’s Canvas

Jan 26, 2024 Sprenkle - CSCI111 27

X  horizontal axis

Y

(0,0)

(200,200)

origin Coordinates are 
specified as (x,y)

a
x
i
s

v
e
r
t
i
c
a
l

What are the 
coordinates for 
these points?



A GraphWin Object’s Canvas

Jan 26, 2024 Sprenkle - CSCI111 28

X  horizontal axis

Y

(0,0)

(200,200)

origin Coordinates are 
specified as (x,y)

What are the 
coordinates for 
these points?

(200, 0)

(100, 100)

(0, 200)

a
x
i
s

v
e
r
t
i
c
a
l



Using the API: Constructors
•To create an object of a certain type/class, use the 
constructor for that type/class
ØSyntax: 

ØSemantics: create an object of type ClassName with the 
given parameters and save it in the variable objName

Øobjname is as an instance of the class ClassName
•Example: To create a GraphWin object that’s identified 

by window
Jan 26, 2024 Sprenkle - CSCI111 29

window = GraphWin("My Window",200,200)

objName = ClassName([parameters])



The GraphWin API: Constructor
•All parameters to the constructor are optional

ØMarked by [ ] 
•Could call constructor as

Jan 26, 2024 Sprenkle - CSCI111 30

Call Meaning

GraphWin() Title, width, height to defaults 
("Graphics Window", 200, 200) 

GraphWin(<title>) Width, height to defaults

GraphWin(<title>,<width>) Height to default

GraphWin(<title>, <width>, <height>)



Using the API: Methods
•To call a method on an object,

ØSyntax: 
ØSemantics: call methodName with the given parameters on 

the object identified by the name objName
ØSimilar to calling functions

•Method names typically begin with lowercase letter
•Example: To change the background color of a 
GraphWin object named window
Jan 26, 2024 Sprenkle - CSCI111 31window.setBackground("blue")

objName.methodName([parameters])



Using the API: Accessor Methods
•A method sometimes returns output, which you may 

want to save in a variable
ØClass’s API should say if method returns output
•Good rule of thumb: if you call a method that returns 

something, save it in a variable.
ØReferred to as an accessor method

•Example: if you want to know the width of a GraphWin
object named window
Jan 26, 2024 Sprenkle - CSCI111 32

width = window.getWidth()



The GraphWin API: Accessor Methods

Jan 26, 2024 Sprenkle - CSCI111 33

• Return some information about 
the GraphWin

Accessor
methods for 
GraphWin

•<GraphWinObj>.getWidth()
•<GraphWinObj>.getHeight()

Example 
methods:



The GraphWin API: Mutator Methods
•Mutator methods: methods that change or mutate an 

object/its state but don’t return anything
• Example: <GraphWinObj>.setBackground(<color>)

ØColors are strings, such as "red" or "purple" (more later…)

ØChanges win's state but does not return anything
•Don’t save method call in a variable

Jan 26, 2024 Sprenkle - CSCI111 34

win = GraphWin()
win.setBackground("purple")



Summary: General Categories of Methods
Accessor
• Returns information about the object
• Example use – save method call’s 

output in a variable:
windowWidth = win.getWidth()

Mutator
• Changes the state of the object

Ø i.e., changes something about the object

• Example use:
win.setBackground("blue")

Jan 26, 2024 Sprenkle - CSCI111 35



Python Naming Conventions
•Object names begin with a lowercase letter
•Class names typically begin with a capital letter
•Method names begin with a lowercase letter

Jan 26, 2024 Sprenkle - CSCI111 36



What Does This Code Do?
1. Identify examples of the OO terminology in this code: 

class, objects, methods, constructors
2.Describe the output from this code

Jan 26, 2024 Sprenkle - CSCI111 37

from graphics import *

win = GraphWin("My Circle", 200, 200)
point = Point(100,100)
c = Circle(point, 10)
c.draw(win)
win.getMouse()

graphics_test.py



What Does This Code Do?

Jan 26, 2024 Sprenkle - CSCI111 38

from graphics import *

win = GraphWin("My Circle", 200, 200)
point = Point(100, 100)
c = Circle(point, 10)
c.draw(win)
win.getMouse()

Constructor

GraphWin 
object

Method called on GraphWin object

Also known as an 
instance of the 
GraphWin class

Need to import the code from graphics.py into our program

Typical OOP Programming Process:
1. Create an instance of an class
2. Call methods on that object



Looking Ahead
•Continue reading in the interactive textbook
•Pre Lab 2 due Tuesday before lab

ØYou’re going to make “something significant” using the 
graphics library

Jan 26, 2024 Sprenkle - CSCI111 39


