
Objectives
•More arithmetic operations
•Getting user input
•Updated software development practices
ØTesting with user input

Jan 24, 2024 Sprenkle - CSCI111 1

Review
1. What is our development process?
ØFor programming, in general
ØFor lab work

2. What are the two division operators?
3. How should you “read” the following

expression? What does it mean?
Ørem = num1 % num2
ØComplete worksheet started last time

Jan 24, 2024 Sprenkle - CSCI111 2

Formalizing Process of
Developing Computational Solutions

1.Create a sketch of how to solve the problem
(the algorithm)

2.Fill in the details in Python
3.Execute the program
4.If output doesn’t match your expectation
ØDebug the program (Where is the problem? How

do I fix it?)
Jan 22, 2024 Sprenkle - CSCI111 3

Our development process will evolve over time

Not necessarily complete program
at first

Development Process for Lab
•Develop in IDLE
1. Create a new file
2. Develop the program (following previous slide)
3. Close the shell
4. Run the program again
5. Save output from program

Jan 22, 2024 Sprenkle - CSCI111 4

Review: Lab Expectations
•Comments in programs
ØHigh-level comments, author
ØNotes for your algorithms, implementation

•Nice, readable, clearly labeled understandable
output
ØUser running your program needs to understand what

the program is saying

Jan 22, 2024 Sprenkle - CSCI111 5

Other Lab Notes
• Trying to set you up for success now

ØDevelop good development habits
ØYou know the expectations and how you should develop as programs

get larger, more complex
• I won’t check your labs before every submission
• Learning how to solve problems

ØEvery week: new problems, new techniques to solve problems
• I am explicit in directions/reminders early

ØThen stop reminding because you should know the process later
• Labs are due on Friday; review before the next lab

Jan 22, 2024 Sprenkle - CSCI111 6

Modulo Practice
1.7 % 2
2.3 % 6
3.6 % 2
4.7 % 14
5.14 % 7
6.6 % 0

Jan 22, 2024 Sprenkle - CSCI111 7

Brainstorm
• What useful thing does % 10 do?

Ø 3 % 10 =
Ø 51 % 10 =
Ø 40 % 10 =
Ø 678 % 10 =
Ø 12543 % 10 =

• What useful thing does // 10 do (integer division)?
Ø 3 // 10 =
Ø 51 // 10 =
Ø 40 // 10=
Ø 678 // 10 =
Ø 12543 // 10 =

• What useful thing does % 2 do?
Jan 22, 2024 Sprenkle - CSCI111 8

Trick: Type Conversion
•You can convert a variable’s type
ØUse the type’s constructor

Jan 22, 2024 Sprenkle - CSCI111 9

Conversion Function/Constructor Example Value
Returned

int(<number or string>) int(3.77)
int("33")

3
33

float(<number or string>) float(22) 22.0

str(<any value>) str(99) "99"

Trick: Arithmetic Shorthands
•Called extended assignment operators
•Increment Operator
Øx = x + 1 can be written as x += 1

•Decrement Operator
Øx = x – 1 can be written as x -= 1

•Shorthands are similar for *, /, // :
Øamount *= 1.055
Øx //= 2Jan 22, 2024 Sprenkle - CSCI111 10

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 22, 2024 Sprenkle - CSCI111 11

Interactive Programs
•Meaningful programs often need input from

users

•Demo: input_demo.py

Jan 22, 2024 Sprenkle - CSCI111 12

2.8 in Text Book

Getting Input From User
•input is a function
ØFunction: A command to do something
•A “subroutine”

•Syntax:
Øinput(<string_prompt>)

•Semantics:
ØDisplay the prompt <string_prompt> in the

terminal
ØRead in the user’s input and return it as a string/text

Jan 22, 2024 Sprenkle - CSCI111 13

Getting Input From User
•Typically used in assignments
•Examples:

Øname=input("What is your name? ")
•name is assigned the string the user enters

Øwidth=eval(input("Enter the width: "))
•What the user enters is evaluated (as a number) and

assigned to width
•Use eval function because expect a number from

user
•Alternatively, could use int or float (conversion

functions) instead of eval
Jan 22, 2024 Sprenkle - CSCI111 14

Prompt displayed to user

Getting Input from User
color = input("What is your favorite color? ")

Jan 22, 2024 Sprenkle - CSCI111 15

> python3 input_demo.py
What is your favorite color? blue
Cool! My favorite color is _light_ blue !

Terminal:
Grabs every character up to
the user presses “enter”

Semantics: Sets the variable color to the user’s input

input_demo.py

Reverse Engineering

•Think about what was displayed
•What code was written to make that happen?
ØTypically, we hear “display”, we think “print

statement”
ØBut, that’s not what was used here because we were

displaying a promptJan 22, 2024 Sprenkle - CSCI111 16

> python3 input_demo.py
What is your favorite color? blue
Cool! My favorite color is _light_ blue !

Terminal:

input_demo.py

What Happens If …?

Jan 22, 2024 Sprenkle - CSCI111 17

str_age = input("Enter your age: ")
age = int(str_age)

Program:

Executing:

User enters a string but you were expecting an integer!

Enter your age: twelve

What Happens If …?

Jan 22, 2024 Sprenkle - CSCI111 18

str_age = input("Enter your age: ")
age = int(str_age)

Enter your age: twelve
Traceback (most recent call last):
 File "/Users/sprenkles/Library/CloudStorage/Box-Box/
CSCI111/prep/int_input.py", line 5, in <module>
 age = int(str_age)
ValueError: invalid literal for int() with base 10: 'twelve'

Program:

Executing:

Restricting User’s Inputs

Jan 22, 2024 Sprenkle - CSCI111 19

>>> x = 7
>>> yourVal = input("My val is: ")
My val is: x
>>> print(yourVal)
x

Restricting User’s Inputs

Jan 22, 2024 Sprenkle - CSCI111 20

>>> x = 7
>>> yourVal = input("My val is: ")
My val is: x
>>> print(yourVal)
x
>>> yourVal = eval(input("My val is: "))
My val is: x
>>> print(yourVal)
7
>>> yourVal = int(input("My val is: "))
My val is: x
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'x'

What happened here?

Restricting User’s Inputs

Jan 22, 2024 Sprenkle - CSCI111 21

>>> x = 7
>>> yourVal = input("My val is: ")
My val is: x
>>> print(yourVal)
x
>>> yourVal = eval(input("My val is: "))
My val is: x
>>> print(yourVal)
7
>>> yourVal = int(input("My val is: "))
My val is: x
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'x'

What happened here?

Summary of Input
•Use the input function to get input from the

user
•Typical use: save the result of the input function

in a variable
•The input function returns a string
ØIf you want a number, wrap the input in the int,
float, or eval function

Jan 24, 2024 Sprenkle - CSCI111 22

Identify the Parts of a Program

Jan 22, 2024 Sprenkle - CSCI111 23

Demonstrate numeric and string input
by Sara Sprenkle for CS111
#

color = input("What is your favorite color? ")
print("Cool! My favorite color is _light_", color, "!")

rating = eval(input("On a scale of 1 to 10, how much do
you like Zendaya? "))
print("Cool! I like her", rating*1.8, "much!")

Identify the comments, variables, assignments,
functions, literals, expressions

input_demo.py

Identify the Parts of a Program

Jan 22, 2024 Sprenkle - CSCI111 24

Demonstrate numeric and string input
by Sara Sprenkle for CS111
#

color = input("What is your favorite color? ")
print("Cool! My favorite color is _light_", color, "!")

rating = eval(input("On a scale of 1 to 10, how much do
you like Zendaya? "))
print("Cool! I like her", rating*1.8, "much!")

Identify the comments, variables, functions,
expressions, assignments, literals

expression

REFINING OUR DEVELOPMENT PROCESS

Jan 24, 2024 Sprenkle - CSCI111 25

Testing Process

•Test case:
ØInput used to test the program
ØExpected output given that input

•Verify if output is what you expected
Jan 24, 2024 Sprenkle - CSCI111 26

Program

Verify output

OutputInput

Expected
Output

Test Case

Testing Process

• Test case:
ØInput used to test the program
ØExpected output given that input

• Verify if output is what you expected
• Goal: create good test cases that will reveal if there is a

problem in your code
Jan 24, 2024 Sprenkle - CSCI111 27

Program

Verify output

OutputInput

Expected
Output

Test Case

If output is not what you expect, we say that the program failed the test case.

Review: Debugging
• After executing program and output did not match what you expected
• Identify the problems in your code

Ø Edit the program to fix the problem
Ø Re-execute/test until all test cases pass

• The error is called a “bug” or a “fault”
• Diagnosing and fixing error is called debugging

Jan 24, 2024 Sprenkle - CSCI111 28

Interpreter
(python)

Program
text file

program.py
Output

Text Editor
(emacs or IDLE)

ERROR! (from testing)

Identify bug, fix

Practice: A Computational Algorithm
•Problem: Find the average of two numbers
•Process:

1. Consider good test cases for the problem
• Start thinking about expectations: “When user

enters these inputs, this should be displayed.”
2. Create a sketch of how to solve the problem (the

algorithm)
3. Fill in the details in Python

Jan 24, 2024 Sprenkle - CSCI111 29

Practice: Development Process
•Problem: Find the average of two numbers
•Test Cases

Jan 24, 2024 Sprenkle - CSCI111 30

Input
num1 num2 Expected Output

Good Test Cases for Finding the Average
•Test both integers
•Test with at least one float
•Test numbers less than or equal to 0

Jan 24, 2024 Sprenkle - CSCI111 31average2.py

Practice: Develop Algorithm
•Problem: Find the average of two numbers

Jan 24, 2024 Sprenkle - CSCI111 32

Looking Ahead
•Pre Lab due Tuesday before lab
•Broader Issue: Algorithm Bias

Jan 24, 2024 Sprenkle - CSCI111 33

