Objectives

More Assignments and Arithmetic

Software development practices
Testing
Debugging
lteration

Jan 22, 2024 Sprenkle - CSCI111

. Note: using slightly different terminology
REVI ew Goal: comfort with terminology, synonyms

What is Python? (two things)
What are the two modes for running Python?

How can we store information?
What is the syntax to do that?

What are the rules and conventions for variable names?
What is another term for “variable names”?
Describe characteristics of good variable names

What are the primitive types of information in Python?

What are the arithmetic operators? Describe their syntax
and semantics.

Jan 22,2024 Sprenkle - CSCI111 2

Review: Python Interpreter

Validates Python programming Ianguage expression(s)
Enforces Python syntax

Reports syntax errors

Executes expression(s |
i p () EXPression mummlpy- Iththor; Valid?
Runtime errors nterpreter

(e.g., divide by 0) /\

Semantic errors ot e ecutable
utpu
(not what you meant) P bytecode

Could be errors

Jan 22, 2024 Sprenkle - CSCI111

Recap: Programming Fundamentals

Most important data ty_fes (for us, for now): 1nt,
float, str, boo

Use these types to represent various information

Variables have identifiers, (implicit) types

Should have “good” names

Names: start with lowercase letter; can have numbers,
underscores

Assignments
X = Y means “x set to value y” or “x is assigned value of y
Only variable on LHS of statement changes

1

Jan 22, 2024 Sprenkle - CSCI111

Review: Numeric Arithmetic Operations

Symbol Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder (“mod”)

* %k Exponentiation (power)

Remember PEMDAS

Jan 22, 2024 Sprenkle - CSCI111

Review: Arithmetic & Assignment

You can use the assignment operator (=) and arithmetic
operators to do calculations

1. Calculate right hand side
2. Assign value to variable

Remember your order of operations! (PEMDAS)

Examples:
X = 4+3*%10
y = 3/2.0 The right-hand sides are

expressions, just like in math.
Z = X+Yy

Jan 22, 2024 Sprenkle - CSCI111

Assignment statements

Assignment statements are NOT math equations!

Valid expression: count = count + 1

These are commands!

X =2
y = X
X =X + 3

After these 3 statements execute,
what are the values of x, y?

Jan 22, 2024 Sprenkle - CSCI111

What are the values?

After executing the following statements, what are the
values of each variable?

a=>5
y=a+ -1%a
z=a+y /2
a=a+ 3

y = (7+x)*z

X = z*2

Jan 22, 2024 Sprenkle - CSCI111 8

What are the values?

After executing the following statements, what are the
values of each variable?

a

X <K 9 N K

Jan 22,2024

5
a+ -1%*a
a+y/ 2

a+ 3

* Runtime error: X doesn’t have a value yet!
C7+X) Z Qi * \N€ sy “X Was not initialized”
Z*Z » Can’t use a variable on RHS until seen on LHS!*

Sprenkle - CSCI111 9

Printing Output

print is a special command or a function
Displays the result of expression(s) to the terminal
Automatically adds a ‘\n’ (carriage return) after it’s printed
Relevant when have multiple print statements

print("Hello, class")

Syntax: a pair of double quotes
Semantics: represents text

Jan 22, 2024 Sprenkle - CSCI111 10

Printing Multiple Things

print is a special command or a function
Syntax: print(Cargl, arg2, arg3, ..)

Semantics: display the arguments, in order separated by a
space in the display; ends with a “\n”

To display multiple “things” on the same line, separate
them with commas

print("Hello,", "class™)

print("x =", 5)

print(x*y, "is the magic number™)

print(r, s, t)

SSSSS kle - CSCI111

Review: Batch Mode

Programmer types a into a text editor

An interpreter turns each expression into and
then executes each expression

Program)
Text Editor text file > Python validates
(e.g., emacs or IDLE) (e.g., program.py) One “line” Interpreter
A

y at%
If errors in program:

e Get feedback about which line caused the Output Executable
problem P bytecode

| 4 | 4

* Interpreter stops validating/executing lines

Jan 22, 2024 Sprenkle - CSCI111 12

Bringing It All Together:
A simple program or script

Demonstrates arithmetic operations and

assignment statements

by Sara Sprenkle Comments: human-readable descriptions.
X = 3 Computer does not execute.

y =5

arith_and_assign.py

Jan 22,2024 Sprenkle - CSCI111 13

Bringing It All Together:
A simple program or script

Demonstrates arithmetic operations and
assignment statements

by Sara Sprenkle

X =3

y =5

print("x =", x)

print("y =", y)

result = x * y

print("x * y =", result)

X
y
X

* 01

3
5
y=

15

If no print statements, the program
would not display anything!

Jan 22,2024 Sprenkle - CSCI111

arith_and_assign.py

Comments: human-readable descriptions.
Computer does not execute.

Program outputs/displays:

14

Bringing It All Together:
A simple program or script

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle

pr'fm:z(::x =::’ X) Comments: human-readable descriptions.
print(ly =", y) Computer does not execute.

alternative to the previous program

print("x * y =", x * y)

H H R

Ul W

Jan 22,2024 Sprenkle - CSCI111 ar"i.th_aﬂd_ass-i.gnz . py 15

Equivalent Output to Previous Example

Demonstrates arithmetic operations A=A

assignment statements Program displays same output as

by3sa'"a Sprenkle previous example

X = ,

y =5

print("x =", x) : : -

orintC"y =" y) This print statement is slightly more

complicated than previous example.
alternative to the prev am
print("x * y =", x * y)

Goal: keep each statement simple so
that it’s easier to find errors.

Jan 22,2024 Sprenkle - CSCI111 Clr"i.th_and_ass'i.gnz . py 16

A Documented Program

Demonstrates arithmetic operations and

assignment statements r

by Sara Sprenkle Comments: human-readable descriptions.
Computer does not execute.

X =3 :

y =5 Can be anywhere in code.

All your submitted programs must have
1. high-level description of what the program does

2. Your name as author and date you authored it

arith_and_assign.py

Jan 22,2024 Sprenkle - CSCI111 17

Programming Building Blocks
Each type of statement is a building block

Initialization/Assignment

Assign.
So far: Arithmetic
. Assign.
We can combine them to create more orint
complex programs Assign.
Assign.

Solutions to problems
print

Jan 22, 2024 Sprenkle - CSCI111

DEVELOPMENT PROCESS

llllllllllllllll

Formalizing Process of
Developing Computational Solutions

Create a sketch of how to solve the problem

(the algorithm) Use comments to describe the steps

Example sketch for previous Python program:

set values for x and y
display values of x and y
calculate the product of x and y

print the results

Jan 22, 2024 Sprenkle - CSCI111 20

Formalizing Process of
Developing Computational Solutions
Create a sketch of how to solve the problem

(the algorithm) Use comments to describe the steps

Fill in the details in Python

set values for x and y

X =3

y =5

display values of x and y
print("x =", x)

print("y =", y)

calculate the product of x and y

Jan 22, 2024 Sprenkle - CSCr11T 21

Formalizing Process of
Developing Computational Solutions

Create a sketch of how to solve the problem
(the algorithm)

Fill in the details in Python
Execute the program May not have everything filled

Test: does the program’s output match your expectation?

Jan 22, 2024 Sprenkle - CSCI111 22

It worked! © Or, it didn’t ®

Sometimes the program doesn’t work

Types of programming errors:

Syntax error

Interpreter shows where the problem is
Logic/semantic error

answer = 2+3

No, answer should be 2*3
Exceptions/Runtime errors

answer =2/0

Undefined variable name

Jan 22, 2024 Sprenkle - CSCI111

23

Debugging

After executing program and output did not match what you expected

Identify the problems in your code
» Edit the program to fix the problem
» Re-execute/test until all test cases pass

The error is called a “bug” or a “fault”
Diagnosing and fixing error is called debugging

, .
e ERROR! (from testing)

(emacs or IDLE) |dentify bug, fix

Program
text file Interpreter Output
program.py (python)

Jan 22,2024 Sprenkle - CSCI111 24

Formalizing Process of
Developing Computational Solutions

Create a sketch of how to solve the problem
(the algorithm)

Fill in the details in Python _
Not necessarily complete program

@ Execute the program at first

If output doesn’t match your expectation

Debug the program (Where is the problem? How do | fix
it?)

Our development process will evolve over time
Jan 22,2024 25

Good Deve
Design the a

opment Practices
gorithm

Break into pieces

Write comments FIRST for each step
Elaborate on what you’re doing in comments when

necessary

Implement and Test each piece separately

ldentify the best pieces to make progress
Iterate over each step to improve it

Jan 22,2024

Sprenkle - CSCI111

26

When to Use Comments

Document the author, high-level description of the
program at the top of the program

Provide an outline of an algorithm
Separates the steps of the algorithm

Describe difficult-to-understand code

Jan 22, 2024 Sprenkle - CSCI111

27

Parts of an Algorithm

Input, Output

Primitive operations
What data you have, what you can do to the data <_l

Naming

Identify things we’re using
Sequence of operations
Conditionals

Handle special cases
Repetition/Loops
Subroutines

Call, reuse similar techniques

Jan 22, 2024 Sprenkle - CSCI111

More on Arithmetic Operations

Symbol Meaning Associativity
+ Addition Left
- Subtraction Left
* Multiplication Left
/ Division Left
% Remainder (“mod”) Left
* ¥ Exponentiation (power) Right

Precedence rules: P E - MD% AS

% negation
Jan 22, 2024 Sprenkle - CSCI111

More on Arithmetic Operations

Symbol Meaning Associativity
+ Addition Left
- Subtraction Left
* Multiplication Left
/ Division Left
% Remainder (“mod”) Left
** Exponentiation (power Associativity matters when you have

Precedence rules: P E - MD% AS

Jan 22,2024

%

negation
Sprenkle - CSCI111

the same operation multiple times.
It tells you where you should start
computing.

Two Division Operators

/ Float Division // Integer Division
Resultisa float Resultisan 1nt
Examples: Examples:

6/3 > 2.0 o//3 > 2

10/3 -> 3.3333333333333335 10//3 = 3
3.0/6.0 > 0.5 3.0//6.0 > 0.0
19/10 - 1.9 19//10 > 1

Jan 22, 2024 Sprenkle - CSCI111

Integer division is the default
division used in many
programming languages
31

Python Division Practice

06.0//12 * 5.0
12 // 4 * 5.2
a = 12//5

b = 6/12
z=a/Db

Showing a mix of expressions
(just expression and within assignment statements;
integers and floats)

Jan 22, 2024 Sprenkle - CSCI111

33

Python Math Practice
5+ 3 * 7
2 * 3 ** 2
_3 * %k 2

Jan 22, 2024 Sprenkle - CSCI111

34

Modulo Operator: %

Modular Arithmetic: Remainder from division

X % Y means the remainder of x//y
Read as “x mod y”

Example: 6 % 4
Read as “six mod four”
6//4 is 1 with a remainder of 2, so 6%4 evaluates to 2

Typical use: only with positive integers
Precedence rules: P E - MD% AS

Jan 22,2024 Sprenkle - CSCI111 35

Modulo Practice
/% 2
3%6
6 % 2

/ % 14

14 % 7

6 % 0

Jan 22,2024

Sprenkle - CSCI111

36

Looking Ahead

Pre Lab 1 due tomorrow before lab
Our first broader issue is due Thursday at 11:59 p.m.
Lab 1 will be due on Friday

llllllllllllllll

