
Objectives
•More Assignments and Arithmetic
•Software development practices

ØTesting
ØDebugging
ØIteration

Jan 22, 2024 Sprenkle - CSCI111 1

Review
1. What is Python? (two things)
2. What are the two modes for running Python?
3. How can we store information?

ØWhat is the syntax to do that?
4. What are the rules and conventions for variable names?

ØWhat is another term for “variable names”?
ØDescribe characteristics of good variable names

5. What are the primitive types of information in Python?
6. What are the arithmetic operators? Describe their syntax

and semantics.
Jan 22, 2024 Sprenkle - CSCI111 2

Note: using slightly different terminology
Goal: comfort with terminology, synonyms

Review: Python Interpreter
1. Validates Python programming language expression(s)

Ø Enforces Python syntax
Ø Reports syntax errors

2. Executes expression(s)
Ø Runtime errors

(e.g., divide by 0)
Ø Semantic errors

(not what you meant)

Jan 22, 2024 Sprenkle - CSCI111 3

Python
Interpreter

Expression

Output Executable
bytecode

Could be errors

Valid?

Recap: Programming Fundamentals
• Most important data types (for us, for now): int,
float, str, bool
ØUse these types to represent various information

• Variables have identifiers, (implicit) types
ØShould have “good” names
ØNames: start with lowercase letter; can have numbers,

underscores
• Assignments

Øx = y means “x set to value y” or “x is assigned value of y”
ØOnly variable on LHS of statement changes

Jan 22, 2024 Sprenkle - CSCI111 4

Review: Numeric Arithmetic Operations

Jan 22, 2024 Sprenkle - CSCI111 5

Remember PEMDAS

Symbol Meaning
+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder (“mod”)

** Exponentiation (power)

Review: Arithmetic & Assignment
• You can use the assignment operator (=) and arithmetic

operators to do calculations
1. Calculate right hand side
2. Assign value to variable

• Remember your order of operations! (PEMDAS)
• Examples:
x = 4+3*10
y = 3/2.0
z = x+y

Jan 22, 2024 Sprenkle - CSCI111 6

The right-hand sides are
expressions, just like in math.

Assignment statements
•Assignment statements are NOT math equations!

ØValid expression:

•These are commands!
x = 2
y = x
x = x + 3

Jan 22, 2024 Sprenkle - CSCI111 7

count = count + 1

After these 3 statements execute,
what are the values of x, y?

What are the values?
•After executing the following statements, what are the

values of each variable?
1. a = 5
2. y = a + -1 * a
3. z = a + y / 2
4. a = a + 3
5. y = (7+x)*z
6. x = z*2

Jan 22, 2024 Sprenkle - CSCI111 8

What are the values?
•After executing the following statements, what are the

values of each variable?
1. a = 5
2. y = a + -1 * a
3. z = a + y / 2
4. a = a + 3
5. y = (7+x)*z
6. x = z*2

Jan 22, 2024 Sprenkle - CSCI111 9

Runtime error: x doesn’t have a value yet!
•We say “x was not initialized”
• Can’t use a variable on RHS until seen on LHS!*

Printing Output
•print is a special command or a function

ØDisplays the result of expression(s) to the terminal
ØAutomatically adds a ‘\n’ (carriage return) after it’s printed
•Relevant when have multiple print statements

•print("Hello, class")

Jan 22, 2024 Sprenkle - CSCI111 10

string literal Syntax: a pair of double quotes
Semantics: represents text

Printing Multiple Things
•print is a special command or a function

ØSyntax: print(arg1, arg2, arg3, …)
ØSemantics: display the arguments, in order separated by a

space in the display; ends with a “\n”
• To display multiple “things” on the same line, separate

them with commas
Øprint("Hello,", "class")
Øprint("x =", 5)
Øprint(x*y, "is the magic number")
Øprint(r, s, t)

Jan 22, 2024 Sprenkle - CSCI111 11

Review: Batch Mode
1. Programmer types a program/script into a text editor
2. An interpreter turns each expression into bytecode and

then executes each expression

Jan 22, 2024 Sprenkle - CSCI111 12

Python
Interpreter

Program
text file

(e.g., program.py)

Output

Text Editor
(e.g., emacs or IDLE)

Executable
bytecode

One “line”
at a time

If errors in program:
• Get feedback about which line caused the

problem
• Interpreter stops validating/executing lines

validates

Bringing It All Together:
A simple program or script

Jan 22, 2024 Sprenkle - CSCI111 13

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

result = x * y
print("x * y =", result)

arith_and_assign.py

Comments: human-readable descriptions.
Computer does not execute.

Bringing It All Together:
A simple program or script

Jan 22, 2024 Sprenkle - CSCI111 14

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

result = x * y
print("x * y =", result)

arith_and_assign.py

Comments: human-readable descriptions.
Computer does not execute.

x = 3
y = 5
x * y = 15

Program outputs/displays:

If no print statements, the program
would not display anything!

Bringing It All Together:
A simple program or script

Jan 22, 2024 Sprenkle - CSCI111 15

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

alternative to the previous program
print("x * y =", x * y)

arith_and_assign2.py

Comments: human-readable descriptions.
Computer does not execute.

Equivalent Output to Previous Example

Jan 22, 2024 Sprenkle - CSCI111 16

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle
x = 3
y = 5

print("x =", x)
print("y =", y)

alternative to the previous program
print("x * y =", x * y)

arith_and_assign2.py

This print statement is slightly more
complicated than previous example.

Goal: keep each statement simple so
that it’s easier to find errors.

Program displays same output as
previous example

A Documented Program

Jan 22, 2024 Sprenkle - CSCI111 17

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

result = x * y
print("x * y =", result)

arith_and_assign.py

Comments: human-readable descriptions.
Computer does not execute.
Can be anywhere in code.

All your submitted programs must have
1. high-level description of what the program does
2. Your name as author and date you authored it

Programming Building Blocks
•Each type of statement is a building block

ØInitialization/Assignment
•So far: Arithmetic

ØPrint
•We can combine them to create more

complex programs
ØSolutions to problems

Jan 22, 2024 Sprenkle - CSCI111 18

print

Assign.

Assign.
Assign.
print
Assign.

print

DEVELOPMENT PROCESS

Jan 22, 2024 Sprenkle - CSCI111 19

Formalizing Process of
Developing Computational Solutions
1.Create a sketch of how to solve the problem

(the algorithm)

Jan 22, 2024 Sprenkle - CSCI111 20

Use comments to describe the steps

set values for x and y

display values of x and y

calculate the product of x and y

print the results

Example sketch for previous Python program:

Formalizing Process of
Developing Computational Solutions
1.Create a sketch of how to solve the problem

(the algorithm)
2.Fill in the details in Python

Jan 22, 2024 Sprenkle - CSCI111 21

Use comments to describe the steps

set values for x and y
x = 3
y = 5

display values of x and y
print("x =", x)
print("y =", y)

calculate the product of x and y
…

Formalizing Process of
Developing Computational Solutions
1.Create a sketch of how to solve the problem

(the algorithm)
2.Fill in the details in Python
3.Execute the program

Ø Test: does the program’s output match your expectation?

Jan 22, 2024 Sprenkle - CSCI111 22

May not have everything filled

It worked! J Or, it didn’t L
•Sometimes the program doesn’t work
•Types of programming errors:

ØSyntax error
•Interpreter shows where the problem is

ØLogic/semantic error
•answer = 2+3
•No, answer should be 2*3

ØExceptions/Runtime errors
•answer = 2/0
•Undefined variable name

Jan 22, 2024 Sprenkle - CSCI111 23

Debugging
• After executing program and output did not match what you expected
• Identify the problems in your code

Ø Edit the program to fix the problem
Ø Re-execute/test until all test cases pass

• The error is called a “bug” or a “fault”
• Diagnosing and fixing error is called debugging

Jan 22, 2024 Sprenkle - CSCI111 24

Interpreter
(python)

Program
text file

program.py
Output

Text Editor
(emacs or IDLE)

ERROR! (from testing)

Identify bug, fix

Formalizing Process of
Developing Computational Solutions

1.Create a sketch of how to solve the problem
(the algorithm)

2.Fill in the details in Python
3.Execute the program
4.If output doesn’t match your expectation
ØDebug the program (Where is the problem? How do I fix

it?)

Jan 22, 2024 Sprenkle - CSCI111 25
Our development process will evolve over time

Not necessarily complete program
at first

Good Development Practices
•Design the algorithm

ØBreak into pieces
•Write comments FIRST for each step

ØElaborate on what you’re doing in comments when
necessary

• Implement and Test each piece separately
ØIdentify the best pieces to make progress
ØIterate over each step to improve it

Jan 22, 2024 Sprenkle - CSCI111 26

When to Use Comments
•Document the author, high-level description of the

program at the top of the program

•Provide an outline of an algorithm
ØSeparates the steps of the algorithm

•Describe difficult-to-understand code

Jan 22, 2024 Sprenkle - CSCI111 27

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 22, 2024 Sprenkle - CSCI111 28

More on Arithmetic Operations

Jan 22, 2024 Sprenkle - CSCI111 29

Precedence rules: P E - MD% AS
negation

Symbol Meaning Associativity

+ Addition Left

- Subtraction Left

* Multiplication Left

/ Division Left

% Remainder (“mod”) Left

** Exponentiation (power) Right

More on Arithmetic Operations

Jan 22, 2024 Sprenkle - CSCI111 30

Precedence rules: P E - MD% AS
negation

Symbol Meaning Associativity

+ Addition Left

- Subtraction Left

* Multiplication Left

/ Division Left

% Remainder (“mod”) Left

** Exponentiation (power) RightAssociativity matters when you have
the same operation multiple times.
It tells you where you should start

computing.

Two Division Operators
/ Float Division
• Result is a float
• Examples:

Ø 6/3 à 2.0
Ø 10/3 à 3.3333333333333335
Ø 3.0/6.0 à 0.5
Ø 19/10 à 1.9

// Integer Division
• Result is an int
• Examples:

Ø 6//3 à 2
Ø 10//3 à 3
Ø 3.0//6.0 à 0.0
Ø 19//10 à 1

Jan 22, 2024 Sprenkle - CSCI111 31

Integer division is the default
division used in many

programming languages

Python Division Practice
1.6.0//12 * 5.0
2.12 // 4 * 5.2
3.a = 12//5
4.b = 6/12
5.z = a / b

Jan 22, 2024 Sprenkle - CSCI111 33

Showing a mix of expressions
(just expression and within assignment statements;

integers and floats)

Python Math Practice
1.5 + 3 * 2
2.2 * 3 ** 2
3.-3 ** 2
4.2 ** 3 ** 3

Jan 22, 2024 Sprenkle - CSCI111 34

Modulo Operator: %
•Modular Arithmetic: Remainder from division

Øx % y means the remainder of x//y
ØRead as “x mod y”

•Example: 6 % 4
ØRead as “six mod four”
Ø6//4 is 1 with a remainder of 2, so 6%4 evaluates to 2

•Typical use: only with positive integers
•Precedence rules: P E - MD% AS

Jan 22, 2024 Sprenkle - CSCI111 35

Modulo Practice
1.7 % 2
2.3 % 6
3.6 % 2
4.7 % 14
5.14 % 7
6.6 % 0

Jan 22, 2024 Sprenkle - CSCI111 36

Looking Ahead
•Pre Lab 1 due tomorrow before lab
•Our first broader issue is due Thursday at 11:59 p.m.
•Lab 1 will be due on Friday

Jan 22, 2024 Sprenkle - CSCI111 37

