
CSCI111 Exam 1 Study Guide 
 
Topics  
 
Introduction to Computer Science  

• algorithms, programs  
• programming languages – characteristics, motivation for 

 
Programming Basics  

• process of writing and executing Python programs 
o interactive and batch mode, interpreter 

• Python keywords  
• data types  
• variables, identifiers, constants 
• numbers and arithmetic operations 
• float vs integer division 
• operator precedence  
• calling functions  
• importing modules and using functions from modules   
• data type constructors (converting between data types)  
• testing, debugging 
• Style: good variable naming, readability  

 
Object-oriented programming 

• Constructors – creating objects 
• Calling methods on objects 
• Using APIs 

 
Control Structures  

• for loops (how does range work?)  
• accumulator design pattern 

 
Functions 

• use, benefits 
• defining your own 
• formal, actual parameters (input to function) 
• returning output from function 
• using functions you’ve defined 
• variable lifetime/scope 
• testing functions 
• putting your own functions in modules 

	 	



Documentation 
• documentation strings, appropriate comments for functions 

 
Development Approaches 

• Bottom-up design 
• Refactoring 

 
Linux  

• terminology  
• basic commands  
• file structure  

 
 
What I expect from you on exam:  

• To know computer science, Python, and programming terminology 

o E.g., names for types of statements  

• To know Linux commands and how to use them, given a typical situation from lab  

• To be able to read a program and describe what the program is doing at a high 
level in plain English (comments), trace through the program’s execution given 
input (control flow), and say what the program outputs  

• To know how to read/understand/use the graphics API 

• To be able to write a program (given an algorithm or creating your own algorithm, 
given a problem)  

o Syntax must be very close to correct (correct keywords, indentation, 
special characters, variable naming, operations) 

o Since the exam is on paper, there is some leniency—you may mark it up 
somehow if, for example, something should be indented  

o No need for constants or comments on a timed exam (unless explicitly 
requested) 

• To be able to explain concepts clearly/concisely as if you were interviewing for a 
job, and you needed to make it clear that you understood the concept to be 
hired. 

 

What I do not expect from you: 

• to memorize the Graphics API 
• to write comments—unless they help you or unless otherwise specified 

 



Suggestions on how to prepare:  
• Review the many in-class exercises, handouts, and review questions 
• Practice reading through programs, tracing through them as the computer 

would, and saying what the output should be  
• Practice programming on paper and verify program in Python. 

o Use problems from class, labs, and textbook.  There are problems that we 
did not complete in the slides. 

• Read through slides for vocabulary and non-problem-solving exercises  
• Use alternative development approaches to solve a problem 

o For example, refactoring code to use functions (lots of problems where 
you could “function-ize it”).  Then, as appropriate, create a test function 
with good test cases using test.testEqual. 

• Review Linux commands and common scenarios 

 

Some Example Problems to Solve: 

• Draw 4 horizontal green lines equal distance apart in a 400x400 window 
o Modify your code to allow different numbers of lines (perhaps getting as 

input from a user) 
• Allow the user to move the circle multiple times (with or without animation) 
• Allow the user to pick the points to draw a line 
• Use the Pythagorean theorem to calculate the length of the long side of a right 

triangle (𝑎! + 𝑏! = 𝑐!à c= ) 
o Make a function that computes it.  Make a main function that gets user 

input and displays the result. 


