CSCI111 Exam 1 Study Guide

Topics

Introduction to Computer Science

algorithms, programs
programming languages — characteristics, motivation for

Programming Basics

process of writing and executing Python programs

o interactive and batch mode, interpreter

Python keywords

data types

variables, identifiers, constants

numbers and arithmetic operations

float vs integer division

operator precedence

calling functions

importing modules and using functions from modules
data type constructors (converting between data types)
testing, debugging

Style: good variable naming, readability

Object-oriented programming

Constructors — creating objects
Calling methods on objects
Using APIs

Control Structures

for loops (how does range work?)
accumulator design pattern

Functions

use, benefits

defining your own

formal, actual parameters (input to function)
returning output from function

using functions you’ve defined

variable lifetime/scope

testing functions

putting your own functions in modules



Documentation
e documentation strings, appropriate comments for functions

Development Approaches
e Bottom-up design
e Refactoring

Linux
e terminology
e basic commands
e file structure

What | expect from you on exam:
e To know computer science, Python, and programming terminology

o E.g., names for types of statements
e To know Linux commands and how to use them, given a typical situation from lab

e To be able to read a program and describe what the program is doing at a high
level in plain English (comments), trace through the program’s execution given
input (control flow), and say what the program outputs

e To know how to read/understand/use the graphics API

e To be able to write a program (given an algorithm or creating your own algorithm,
given a problem)

o Syntax must be very close to correct (correct keywords, indentation,
special characters, variable naming, operations)

o Since the exam is on paper, there is some leniency—you may mark it up
somehow if, for example, something should be indented

o No need for constants or comments on a timed exam (unless explicitly
requested)

e To be able to explain concepts clearly/concisely as if you were interviewing for a
job, and you needed to make it clear that you understood the concept to be
hired.

What | do not expect from you:

e to memorize the Graphics API
e to write comments—unless they help you or unless otherwise specified



Suggestions on how to prepare:
e Review the many in-class exercises, handouts, and review questions
e Practice reading through programs, tracing through them as the computer
would, and saying what the output should be
e Practice programming on paper and verify program in Python.
o Use problems from class, labs, and textbook. There are problems that we
did not complete in the slides.
e Read through slides for vocabulary and non-problem-solving exercises
e Use alternative development approaches to solve a problem
o For example, refactoring code to use functions (lots of problems where
you could “function-ize it”). Then, as appropriate, create a test function
with good test cases using test.testEqual.
Review Linux commands and common scenarios

Some Example Problems to Solve:

e Draw 4 horizontal green lines equal distance apart in a 400x400 window
o Modify your code to allow different numbers of lines (perhaps getting as
input from a user)
e Allow the user to move the circle multiple times (with or without animation)
e Allow the user to pick the points to draw a line
e Use the Pythagorean theorem to calculate the length of the long side of a right

triangle (a? + b? = ¢?> =V a2+ b2)

o Make a function that computes it. Make a main function that gets user
input and displays the result.



