Web Programming:
Java Servlets and JSPs

Sara Sprenkle
August 3, 2006

Announcements

Assignment 6 due today
Project 2 due next Wednesday

Review
XML

August 3, 2006 Sara Sprenkle - CISC370

Web Programming

Client Server
A\ <_>
Web Browser Web Web
Server Application

Specialized network programming

Web browser: makes requests, renders
responses; executes JavaScript, client-side code

Web Server: handles static requests
Web Application: handles dynamic requests

August 3, 2006 Sara Sprenkle - CISC370 3

Web Programming

HTTP Request

Client Server
X <+—>
/ Response:
Web Browser HTML. Documeqt - can
contain JavaScript Web Web
Server Application

Web Application
Parses request, including data
Executes request
Returns response (often an HTML document)
May do other things, like send email, ...

August 3, 2006 Sara Sprenkle - CISC370 4

Java Web Application Server

HTTP
Request Server
Client Web
Application
Response: Server

HTML Document @ @ @

Web Application Server
Container to run the web applications

Listens on another port besides 80, typically
8080

August 3, 2006 Sara Sprenkle - CISC370

Servlets

A servlet is a Java program that extends the
functionality of web servers

Processing occurs at the server and then the results
(typically as an HTML file) are sent back to the client

In javax.servlet.* packages
Part of J2EE or as a separate download
Servlets are Java’s answer to CGl

Servlets are supported by many major web
servers

including Netscape, iPlanet, and Apache (with
Tomcat/Jakarta)

Specialized web servers: Resin

August 3, 2006 Sara Sprenkle - CISC370

The Servlet Interface

All servlets implement the Servlet interface

Many key methods of Servlet interface are
invoked automatically

Web application server calls methods
The program itself does not call

August 3, 2006 Sara Sprenkle - CISC370 7

Servlet Interface: Key Methods

init(ServerConfig config)
Called once by the web server to initialize the servlet
ServletConfig getServletConfig()

Returns a reference to a ServletConfig that provides access to
the servlet’s configuration information and the servlet’s
ServletContext, which provides access to the server itself

void service(ServletRequest, ServletResponse)

Called to respond to a client request
String getServletinfo()

Returns a String that describes the servlet (name, version, etc.)
void destroy()

Called by the server to terminate a servlet

Should close open files, close database connections, etc.

August 3, 2006 Sara Sprenkle - CISC370 8

The service() Method

Called for every client request by
application server
Generally not overridden

Method receives both a ServletRequest and
a ServletResponse object

ServletRequest gives the servlet access to
input streams and methods to read data from
the client

ServletResponse gives the servlet access to
output streams and methods to write data back
to the client

August 3, 2006 Sara Sprenkle - CISC370 9

The HttpServlet Class

Web-based servlets (almost all of them)
typically extend the HttpServlet class

HttpServlet overrides the service() method to
distinguish between the typical types of requests
(HTTP commands/requests)

Most common request types are GET and POST
GET - data encoded in URL
Request a resource (file) or retrieve data
POST - data encoded in body of message
Upload data; processing; hide data from URL

August 3, 2006 Sara Sprenkle - CISC370 10

The doGet() & doPost() Methods

HttpServlet defines the doGet() and
doPost() methods

service() calls the respective method in
response to a HTTP GET or POST
request
doGet() and doPost() receive

HttpServletRequest

From the client
HttpServletResponse

To the client

August 3, 2006 Sara Sprenkle - CISC370 11

The HttpServletRequest Object

String getParameter(String)
Returns the value of a parameter sent to the servlet
String[] getParameterValues (String)

Returns an array of Strings containing the values for a
specific servlet parameter

Enumeration getParameterNames()

Returns the names of all of the parameters passed to
the servlet

Requests for a digital publication library:

GET dspace/simple-search?search=xxx&sort=date&title=Title
GET dspace/simple-search?search=xxx&sort=name&header=head

August 3, 2006 Sara Sprenkle - CISC370 12

The HttpServletRequest Object

Cookie[] getCookies()

Returns an array of Cookie class objects that have been
stored on the client by the server

Cookies can be used to uniquely identify clients to the
server

HttpSession getSession (boolean create)

Returns an HttpSession associated with the client’s
current browser session

Sessions can also be used to uniquely identify clients

August 3, 2006 Sara Sprenkle - CISC370 13

The HttpServletResponse Object

void addCookie(Cookie)
Add a Cookie to the header in the response to the client

The cookie will be stored on the client, depending on the max-
life and if the client allows cookies

ServletOutputStream getOutputStream()

obtains a byte output stream that enables the servlet to send
binary data to the client

PrintWriter getWriter()

obtains a text writer that enables the servlet to send character
data to the client

void setContentType(String)

Specifies the MIME type of the response to the client so that
the browser will know what it received and how to format it

“text/html” specifies an HTML document

August 3, 2006 Sara Sprenkle - CISC370 14

A Simple Example

Let’'s create a very basic servlet

Create a HTML page with a very basic form,
one submit button

When the button is pressed, browser passes
the servlet a basic GET request

August 3, 2006 Sara Sprenkle - CISC370 15

<HTML>
<HEAD>
<TITLE>Servlet HTTP GET Example (simple!)</TITLE>
</HEAD>
<BODY>
<FORM ACTION=
“http://localhost:8080/080306/SimpleServiet”
METHOD="“GET ">
<P>Click on the button to have the servlet send back an
HTML document.</P>
<INPUT TYPE=“submit” VALUE=“Get HTML Document”>
</FORM>

</BODY> Creates a submit button
</HTML>

When the submit button is pressed, the browser makes a GET
request to the web application server on the local machine
listening to port 8080.

The application server then calls the doGet() method on the
servlet, which is named HTTPGetServlet and located in a
webapp directory

August 3, 2006 Sara Sprenkle - CISC370 16

The

Actual Servlet

We can design the server to only accept/handle
GET requests

Extend the HttpServlet class and override the doGet()
method

Could return an error inside of doPost()

doG

et() method needs to

Obtain an output stream writer to write back to the client
Generate an HTML page

Write out the HTML page to the client using the writer
Close the writer

August 3

, 2006 Sara Sprenkle - CISC370 17

import
import
import
public

pub

javax.servlet.*;

javax.servlet.http.*;

java.io.*;

class HTTPGetServlet extends HttpServlet {

lic void doGet (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException

{

PrintWriter output;

response.setContentType (V“text/html”) ;

output = response.getWriter();

StringBuffer buffer = new StringBuffer();
buffer.append (“<HTML><HEAD><TITLE>\n") ;
buffer.append (YA Simple Servlet Example\n”);
buffer.append (“</TITLE></HEAD><BODY>\n") ;
buffer.append (“<H1>Welcome to Servlets!</HI1>\n");
buffer.append (“</BODY></HTML>\n") ;
output.println(buffer.toString());
output.close();

} August 3, 2006 Sara Sprenkle - CISC370 18

The Example Servlet Flow
HTMLJ
Form

HTTP
Request

Client

Web Response

Browser
HTML
Document
L ______ r
August 3, 2006 Sara Sprenkle - CISC370 19

A More Complex Example

This example was the most basic type of serviet

it always did the same thing
The power of servlets is that the web server can
receive data from the client, perform substantial
processing, and then generate results to send back
to the client
As a more complex example, let’s create a survey
system

An HTML document that asks the user for their favorite
type of pet

After they submit the form, the server sends back the
current results of the survey.

August 3, 2006 Sara Sprenkle - CISC370 20

10

<HTML>
<HEAD>
<TITLE>Pet Surv
</HEAD>
<BODY>
<FORM METHOD=“POST

ey</TITLE>

”

ACTION=“SurveyServlet”>

What is your favorite pet?

<INPUT TYPE=radio
<INPUT TYPE=radio
<INPUT TYPE=radio
<INPUT TYPE=radio
<INPUT TYPE=radio
<INPUT TYPE=radio

<INPUT TYPE=submit VALUE=“Submit”>

<INPUT TYPE=reset>
</FORM>

</BODY>

</HTML>

August 3, 2006

NAME=animal
NAME=animal
NAME=animal
NAME=animal
NAME=animal
NAME=animal

Assumes on same server,
Same path

VALUE=dog>Do
VALUE=cat>Cat

VALUE=bird>B1lrd

VALUE=snake>
VALUE=fish>F]1sh{BR>
VALUE=none CHECKED>Other

Create a radio button for each
type of animal in the survey.

Sara Sprenkle - CISC370 21

public class SurveyServlet extends HttpServlet {

private String animalNames []

{“dog", “Cat", “bird", “Snake", “fj_Sh", “none” }’,

public void doPost (HttpServletRequest request,
HttpServletResponse response)

throws ServletException,

{

int animals|[]

try {

IOException

= null, total = 0;
File £ = new File(“survey.results”);
if (f.exists()) {

ObjectInputStream in = new ObjectInputStream (
new FileInputStream(f));

animals = (int [])

in.close();
for (int x = 0; x < animals.length; x++)
total += animals([x];
} catch (ClassNotFoundException exp) { };
ls = new int([6];

} else anima

August 3, 2006

in.readObject () ;

Sara Sprenkle - CISC370 22

11

// read current response (that caused this to run)
String value = request.getParameter (“animal”);
total++;

// determine which was selected and update the total
for (int x = 0; x < animalNames.length; x++)
if (value.equals (animalNames [x]))
animals [x]++;

// write updated total to the disk

ObjectOutputStream out = new ObjectOutputStream (
new FileOutputStream(f));

out.writeObject (animals) ;

out.flush();

out.close();

// determine precentages

double percentages[] = new double[animals.length];

for (int x = 0; x < percentages.length; x++)
percentages([x] = 100.0 * animals[x] / total;

August 3, 2006 Sara Sprenkle - CISC370 23

// now sent a thanks to the client and the results
response.setContentType (“text/html”) ;
PrintWriter clientOutput = response.getWriter ();
StringBuffer buffer = new StringBuffer ();
buffer.append (“<HTML><TITLE>Thanks!</TITLE>\n");
buffer.append (“Thanks for your input.
Results:\n<PRE>");
DecimalFormat twoDigits = new DecimalFormat (“#0.00”);
for (int x = 0; x < percentages.length; x++) {
buffer.append (“
"” + animalNames[x] + “: ”);
buffer.append(twoDigits.format (percentages|[x]));
buffer.append (“% Responses: ” + animals([x] + “\n”);
}
buffer.append (“"\n

Total Responses: ”);
buffer.append (total + “</PRE>\n</HTML>") ;

clientOutput.println (buffer.toString());
clientOutput.close();

August 3, 2006 Sara Sprenkle - CISC370 24

12

Multiple Clients

The survey servlet stores the results of the
survey in a static file on the web server

What happens if more than one client connects to
the server at one time?

The server handles both of the clients
concurrently

More than one thread can open/close/modify that file
at one time

Can lead to inconsistent data!

Need to use Java’s synchronization mechanisms
How would you synchronize SurveyServlet?

August 3, 2006 Sara Sprenkle - CISC370 25

Cookies

A popular way to customize web pages is to
use cookies
Cookies are sent from the server (servlet) to the
client
Small files, part of a header in the response to a
client
Every HTTP transaction includes HTTP headers

Store information on the client’s computer that
can be retrieved later in the same browser
session or in a future browsing session

August 3, 2006 Sara Sprenkle - CISC370 26

Cookies

When a servlet receives a request from the client,
the header contains the cookies stored on the
client by the server

When the servlet sends back a response, the
headers can include any cookies that the server
wants to store on the client

For example, the server could store a person’s
book preferences in a cookie

When that person returns to the online store later, the
server can examine the cookies and read back the
preferences

August 3, 2006 Sara Sprenkle - CISC370 27

Cookie Structure

Cookies have the name/value structure
(similar to a hashtable)

Creating a Cookie object is very easy
pass the constructor a name and a value
For example, to store a user’s preferred

language on the client (so the servlet only
has to ask for this information once)...

String cookie name = new String(“Pref language”);
String cookie value = new String(“English”);
Cookie new cookie = new Cookie(cookie name, cookie value);

August 3, 2006 Sara Sprenkle - CISC370 28

Sending the Cookie to the Client

Construct the Cookie object

Call addCookie() on the HttpServletResponse
object before you call the getWriter() method

HTTP header is always sent first, so the cookie(s)
must be added to the response object before you
start writing to the client

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

Cookie ¢ = new Cookie (“Pref language”, “English”);
c.setMaxAge (120) ; // max age of cookie
response.addCookie (c) ;

output = response.getWriter();
} August 3, 2006 Sara Sprenkle - CISC370 29

Cookies: Maximum Ages

The maximum age of the cookie is how long
the cookie can live on the client (in seconds)

When a cookie reaches it maximum age, the
client automatically deletes it

August 3, 2006 Sara Sprenkle - CISC370 30

Retrieving Cookies

Call getCookies() on the HttpServletRequest
object

returns an array of Cookie objects, representing the
cookies that the server previously sent to the client
For example...

public void doPost (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException

{

Cookie[] cookies = request.getCookies();

}

August 3, 2006 Sara Sprenkle - CISC370 31

Retrieving Cookies

The client will send all cookies that the
server previously sent to it in the HTTP
headers of its requests

Client’s cookies are available immediately

upon entry into the doPost() and doGet()
methods

August 3, 2006 Sara Sprenkle - CISC370 32

Session variables

A session is one user’s visit to an application

Can be made up of lots of accesses
Associate data with a session rather than a request
Example:

User gives application data
Application stores data in session variable value/
name\ /variable
session.setAttribute("username”, username);

Application can use later, without user having to give
information every time

String username = session.getAttribute(“username”);

August 3, 2006 Sara Sprenkle - CISC370 33

JavaServer Pages (JSPs)

Simplify web application development
Separate Ul from backend code
Difficult to write HTML in print statements

Merge HTML and Java

Separate static HTML from dynamic
Make HTML templates, fill in dynamic content

Web application server compiles JSPs into
Servlet code

August 3, 2006 Sara Sprenkle - CISC370 34

JSP Syntax

Enclose code in <% %>

<html>
<body>
Hello! The time is now <%= new java.util.Date() %>
</body>
</html>

Expression

Aside: new convention is all lowercase HTML
tags

August 3, 2006 Sara Sprenkle - CISC370 35

JSP Syntax

<html>

<body>

<%
// This is a scriptlet. Notice that the "date"
// variable we declare here is available in the
// embedded expression later on.
java.util.Date date = new java.util.Date();

%>

Hello! The time is now <%= date %>

</body>

</html>

August 3, 2006 Sara Sprenkle - CISC370 36

18

JSP Directives

Page Directive

Java files to import (like import statement in Java)

<%@ page import="java.util.*,java.text.*"
%>

<%@ page
import="servlets.SurveyServlet2"%>
Include Directive

Include contents of another file: JSP or HTML or text

Could include common headers or footers for a site
<%@ include file="hello.jsp" %>

August 3, 2006 Sara Sprenkle - CISC370 37

JSP Variables

By default, JSPs have some variables
not explicitly declared in the file
HttpServietRequest request
HttpServietResponse response
HttpSession session

From JSPs, can get access to request
parameters, session data

August 3, 2006 Sara Sprenkle - CISC370 38

Web Application Architecture

opIs-1onIag

Java Classes

(Model) JSP

Client

DataStore -

Java Servlets

Using traditional Java classes, JSPs and Servlets
together

August 3, 2006 Sara Sprenkle - CISC370 39

Communicating Between JSPs and Servlets

Attributes

Name/Value pairs

Values are Objects

Can get/set attributes on the request object
Rather than Parameters

All Strings

From forms or in URLs

SurveyServlet2
pet.jsp

August 3, 2006 Sara Sprenkle - CISC370 40

20

A Real Example: CPM

The Course Project Manager that we use

Technologies
JSPs, Servlets
Filestore backend

August 3, 2006 Sara Sprenkle - CISC370 41

Deployment: WAR files

Web Archives
Copy into webapp directory of web
application server
Server will automatically extract files and run
Procedure for Apache/Tomcat and Resin

Can create WAR files from Eclipse, with Web
Tools Plugin

August 3, 2006 Sara Sprenkle - CISC370 42

Configuration: web.xml

Contains configuration parameters

For security
Map URLs to Servlet names
Map Servlet classes to Servlet names

August 3, 2006 Sara Sprenkle - CISC370 43

Web Programming Tools

Eclipse plugin
Web Tools Platform
http://www.eclipse.org/webtools/

Firefox plugins
Firebug

Web developer plug-in:
http://chrispederick.com/work/webdeveloper/

August 3, 2006 Sara Sprenkle - CISC370 44

Newer Web Technologies

Struts
Controller component of MVC

Model and Viewer are from other standard
technologies

JSPs, JDBC

JavaServer Faces (JSF)
Framework to make creating Uls easier
Custom JSP tag libraries

August 3, 2006 Sara Sprenkle - CISC370 45

Exam Preparation

Similar format to quizzes

Variety of questions

May have some “find the bug” and coding
questions

Covers all topics this semester
What we did, how/when to apply/use
Bring your questions next Tuesday
Also have quiz
Brief overview of other packages

August 3, 2006 Sara Sprenkle - CISC370 46

Project2

Replay tool to help automate testing
Generate different test cases
Makes requests, saves responses

August 3, 2006 Sara Sprenkle - CISC370

47

