Network Programming

Sara Sprenkle
July 27, 2006

Network Programming and Java

A computer network is an interconnected
collection of autonomous computers
each computer is independent
some method of communication exists between
them
Java abstracts all of the details of the
underlying network and how the operating
system interacts with it

Hidden and encapsulated in the java.net
package

Makes network programming easier

July 27, 2006 Sara Sprenkle - CISC370 2

Distributed Programming

Client
Client > Server
Client X
Application
code

Server application provides a service

Client program(s) communicates with server
application

July 27, 2006 Sara Sprenkle - CISC370 3

Network Addresses

A computer on a network has an address.

address is used to uniquely identify the

computer (also known as a host) on the network
The most common address system in use
today is the Internet Protocol (IPv4)
addressing system

a 32-bit address, typically written as a “dotted-
quad”: four numbers, 0 through 254, separated
by dots, e.g.,

192.168.10.253

July 27, 2006 Sara Sprenkle - CISC370 4

Ports

Each host on the network has a set of ports

Ports are like mailboxes: the address specifies the host,

the port specifies the application on the host
Ports range from 1 to 65537

These ports allow multiple applications to use the
same network interface/address to communicate
over the network.

For example

a web server will communicate on the network using

port 80

an FTP server on the same host will have the same
address but use port 21

July 27, 2006

Sara Sprenkle - CISC370

A Machine’s Ports

“Mailboxes”

Network

€G2°01L891°¢61

July 27, 2006

21 |« > FTP server
23 ¢ > Telnet server
80 |« > HTTP server

3477 « > HTTP client

Sara Sprenkle - CISC370

Well-Known Ports

Port numbers < 1024 are well-known ports
Well-known ports are assigned to application servers
Port 80 always has an HTTP server
Port 21 always has an FTP server

Client listens on another port (above 1024) to

receive responses from a server

No technical reason servers must conform to

these standards

A convention so that clients will always know where
the web server is, where the FTP server s, ...

Can have an HTTP server at a port > 1024

July 27, 2006 Sara Sprenkle - CISC370 7

Sockets

A socket is an abstraction of an endpoint of
a two-way communications link
An application creates a socket that is bound
to a remote address and remote port.

port on the host (client) could be random

a “connection” is created between the client
using this port and the specified remote address
at the remote port

July 27, 2006 Sara Sprenkle - CISC370 8

Services provided by networks

Connection-oriented
Connection-less

July 27, 2006 Sara Sprenkle - CISC370 9

Connection-Oriented Service

A connection-oriented service is like the
telephone system
acts like a pipe

sender pushes object bits into the pipe and then
come out of the receiver in the same condition
as they were pushed in

pipe is connected to one port on the sender and
one port on the receiver

Implemented in Java using stream sockets

July 27, 2006 Sara Sprenkle - CISC370 10

Stream Sockets

After a stream socket is open on both the server
and the client and the sockets connect to each
other, a pipe connects endpoints and provides a
reliable byte stream

Transmission Control Protocol (TCP)

most popular protocol that implements a stream, or
connection-oriented, service

Java uses to implement stream sockets
Reliable service

when something is sent from one end to the other, it arrives
in order, in the same state, and is not lost or duplicated in
the network

July 27, 2006 Sara Sprenkle - CISC370 11

Stream Sockets

Client Server

Socket

Stream Socket: communicates using TCP
Hides details of TCP from programmer

July 27, 2006 Sara Sprenkle - CISC370 12

Connectionless Service

A connectionless service is like the postal
system
One side sends messages to the other side
Each message is independent
Can lose messages in the network, duplicate
messages, corrupt data during transport
An unreliable service

although most of the time this bad stuff does not
happen -- much more reliable underlying network

One side creates a message and sends it to the
other side

July 27, 2006 Sara Sprenkle - CISC370 13

Datagram Sockets

User Datagram Protocol (UDP)
Popular protocol that Java uses to implement datagram
sockets

Unreliable: All sorts of things can happen to the
messages during transport in the network (although
most of the time, they get there just fine).

No connection between these sockets

A socket is opened to another socket, but no connection
is actually made

When a message is passed to the socket, it is sent over
the network to the other socket. Most of the time it gets
there.

July 27, 2006 Sara Sprenkle - CISC370 14

Example Java Client Program

Connect to a server (another host on the
network)

Open a stream to a certain port
Display what the server sends

July 27, 2006 Sara Sprenkle - CISC370 15

public class SocketTest {
public static void main (String[] args) {
try {
Socket s = new Socket (
“time-A.timefreqg.bldrdoc.gov”, 13);
BufferedReader in = new BufferedReader (
new InputStreamReader (s.getInputStream()));

boolean more = true;
while (more) {
String line = in.readLine();
if (line == null) more = false;
else System.out.println (line) ;

}
} catch (IOException exp) {
System.out.println (“Error:” + exp);
}
}

July 27, 2006 Sara Sprenkle - CISC370 16

}

Reading from a Socket

Socket s = new Socket (
“time-A.timefreqg.bldrdoc.gov”, 13);

BufferedReader in = new BufferedReader (new
InputStreamReader (s.getInputStream()))

The first line creates a socket that connects to the
host with the specified name at port 13 on that host

getlnputStream() is called on the socket to get a
byte stream that reads from the socket

An InputStreamReader wraps the byte stream and
a BufferedReader wraps the InputStreamReader

The BufferedReader reads all characters sent by
the server using readLine() and displays each line
to System.out.

July 27, 2006 Sara Sprenkle - CISC370 17

Network I/O and Exceptions

All of the networking code in this example is inside
of a try block

A number of things can go wrong with network
communications

a power failure knocking out an intermediate router or
switch

a misconfiguration,
someone tripping over a cable

If any of these errors are detected, an IOException
is generated, so any program performing such
functionality should handle such exceptions

July 27, 2006 Sara Sprenkle - CISC370 18

Host Names and IP Addresses

A name is provided to the socket constructor
not an IP address
called a host name
Java uses the Domain Name Service (DNS)
to resolve the host name into an IP address
connect to the host using the IP address
Usually, you will not work directly with IP
addresses

You can connect a socket using a host’s IP
address

July 27, 2006 Sara Sprenkle - CISC370 19

Host Names and IP Addresses

InetAddress’s static method, getByName().
For example,

InetAddress addr = InetAddress.getByName (
“www.udel.edu”) ;

will return an InetAddress object that
encapsulates the sequence of four bytes

128.175.13.63

July 27, 2006 Sara Sprenkle - CISC370 20

Multiple IP Addresses per Host

A host can have more than one IP
address
facilitate load-balancing.

For example, www.cnn.com currently
corresponds to 8 different IP addresses

one can be picked at random whenever the
host is accessed (usually just the first)

To determine all of the IP addresses of a
specific host, call getAllByName()...

InetAddress[] addresses = InetAddress.getAllByName (
“www.cnn.com”) ;

July 27, 2006 Sara Sprenkle - CISC370 21

The Loopback Address and localhost

To get information about the machine the program
is running on, the hostname localhost always
represents the local host

Hostname corresponds to the IP address 127.0.0.1,
which is known as the loopback address.

a special IP address that means “the computer
connected right here”

July 27, 2006 Sara Sprenkle - CISC370 22

Determining the Local Address

If the program calls getByName() with
localhost, the returned IP address is
127.0.0.1

To get the actual IP address of the host, call
getLocalHost()

returns the actual IP address of the host on the
network

For example...

InetAddress address =
InetAddress.getLocalHost () ;

InetAddressPractice.java
July 27, 2006 Sara Sprenkle - CISC370 23

A Bi-Directional Client

Our simple client program connects to a
server and displays what the server sent
back

After the server finishes, the client disconnects
Often, the client wants to send data to the
server as well as receive data from the
server

Sockets are bi-directional

Need to open an output stream on the socket

July 27, 2006 Sara Sprenkle - CISC370 24

This test program opens both input and output streams on the
same socket — to both read from and write to the server.

public class BidirSocketTest {
public static void main (String[] args) {
try {
Socket s = new Socket (
“time-A.timefreqg.bldrdoc.gov”, 13);
BufferedReader in = new BufferedReader (
new InputStreamReader (s.getInputStream()));

PrintWriter out = new PrintWriter (

s.getOutputStream(), true); // auto-flush
// read from in (input - received from server)
// write to out (output - send to server)

} catch (IOException exp) {
System.out.println (“Error:” + exp);
}
}

July 27, 2006 Sara Sprenkle - CISC370 25

Clients and Servers

When we open a connection, it is made to a
host at a certain address to a certain port.

For this to work, the server on the remote
host must be listening to that port and wait
for a client to connect to that port

the server obtains a socket that is an

abstraction of its end of the stream, connected
to the connecting client

July 27, 2006 Sara Sprenkle - CISC370 26

The Socket Abstraction

Client > Server

e

Socket

Each end of socket has input/output

July 27, 2006 Sara Sprenkle - CISC370 27

The ServerSocket Class

Server programs (programs that listen to a port for
a connection request) are implemented using the
ServerSocket class.

A ServerSocket object is created by specifying the
port number to listen for connections on...

ServerSocket svrl = new ServerSocket (1998);

creates a server socket on port 1998
not a well-known port number because it is > 1024
Server object listens for connection requests on this port

July 27, 2006 Sara Sprenkle - CISC370 28

Accepting a Connection

The server program can wait for a client
request to connect on that port by calling
accept()

blocking method that waits indefinitely until a
client attempts to connect to the port

When client connects, accept() returns a Socket
object, which is how the server communicates
with the client...

// will block until a client connects
Socket incoming = svrl.accept();

July 27, 2006 Sara Sprenkle - CISC370 29

Example: An Echo Server

Create a simple server that will wait for a
client to connect

When a client connects, the server will read
a line from the client and then return a line
identical to what it has received.

Known as an echo server because it echoes
back what it receives from the client

As an added twist, echo server will echo
back what it receives in all capital letters

July 27, 2006 Sara Sprenkle - CISC370 30

public class CapsEchoServer {
public static void main(String[] args) {
try {
ServerSocket svrl = new ServerSocket (1998);
Socket incoming = svrl.accept();
BufferedReader in = new BufferedReader (new
InputStreamReader (incoming.getInputStream()) ;
PrintWriter out = new PrintWriter (
incoming.getOutputStream (), true);
out.println (“CAPS Echo Server. Type BYE to exit”);
boolean done = false;
while (!done) {
String line = in.readLine ();
if (line == null) done = true;
else if (line.trim() .equals(“BYE”)) done = true;
else out.println (“Echo:” + line.trim() .toUpperCase());
}
incoming.close();
} catch (IOException exp) {
System.out.println (“Error:” + exp);
}

b}
July 27, 2006 Sara Sprenkle - CISC370 31

Example: An Echo Server

Purpose of a ServerSocket object is to wait
for connections

When a client connects, it generates a new
Socket object, which is the server’s
endpoint of the connection, and returns the
from the call to accept()

Suppose we would like to allow multiple
clients to connect to the echo server at the
same time

July 27, 2006 Sara Sprenkle - CISC370 32

Servers and Multiple Clients

Servers should handle multiple concurrent
clients

If a server only allowed one client to connect at
any given time, any client can monopolize the
service by remaining connected to the server
for a long time

Who does this sound like a job for?

July 27, 2006 Sara Sprenkle - CISC370 33

Servers and Multiple Clients

After the server returns from accept() with
the Socket object, the server can start a new
thread to handle the connection between the
server and this client

The main server program can go back and
call accept() again, waiting for a new client to
connect

July 27, 2006 Sara Sprenkle - CISC370 34

A Multithreaded Server

while (true)

{

Socket incoming = svrl.accept();
Thread clientThread =

new ThreadedEchoHandler (incoming) ;
clientThread.start ();

User-defined ThreadedEchoHandler class
derives from Thread

the client communication loop is its run()
method...

July 27, 2006 Sara Sprenkle - CISC370 35

class ThreadedEchoHandler extends Thread ({
ThreadedEchoHandler (Socket incoming)
{ this.incoming = incoming; }

public void run() {
try |
BufferedReader in = new BufferedReader (
new InputStreamReader (incoming.getInputStream())):

PrintWriter out = new PrintWriter (
incoming.getOutputStream()) ;

boolean done = false;

while (!done) {
String line = in.readLine();
if (line == null) done = true;
else if (line.trim() .equals(“BYE”)) done = true;
else out.println (“Echo:” + line.trim() .toUpper ();

}

incoming.close(); } catch (IOException exp)
{ System.out.println (“Error:” + exp); }

}

Socket incoming;
} July 27, 2006 Sara Sprenkle - CISC370 36

A Multithreaded Server

Each connection starts a new thread
multiple clients can connect to the server at the same
time
As soon as a client connects, accept() returns a
Socket that encapsulates this new connection

socket is passed into a new thread to handle the
connection

The thread is then started and deals with the
connection from then on

The main thread goes back to waiting for a new
connection

July 27, 2006 Sara Sprenkle - CISC370 37

Multithreaded Server Issues

Any problems with having a thread handle
each incoming request?
Performance

July 27, 2006 Sara Sprenkle - CISC370 38

Multithreaded Server Issues

For each request, must create a thread
Overhead in creating threads
What happens if receive too many client
requests and have to start/fork too many
threads?
Machine runs out of memory
Machine gets bogged down
Threads can’t make progress

July 27, 2006 Sara Sprenkle - CISC370 39

Multi-threaded Server Solutions

Solution: Limit the number of incoming
connections/threads available
new ServerSocket(int port, int backlog)
The maximum length of the queue
After <backlog> requests, additional requests
are refused
Create a thread pool
Create available threads at startup

Get one of these threads when to handle
requests

See java.util.concurrent.Executors

July 27, 2006 Sara Sprenkle - CISC370 40

Other Types of Network Streams

So far, we have connected
BufferedReaders and PrintWriters to our
socket’s input and output streams
To receive and send text from the streams
Reader/Writer classes handle text
Suppose we wanted to exchange typed
data over a network socket

wrap a DatalnputStream object and a
DataOutputStream object to the socket

July 27, 2006 Sara Sprenkle - CISC370 41

Typed Data Network Streams

For a client program
Create a Socket object

Obtain the input and output streams associated with
that socket

Attach DatalnputStream and DataOutputStream objects

Socket sktl = new Socket (“localhost”,1998);
DataInputStream in =

new DatalnputStream(sktl.getInputStream());
DataOutputStream out =

new DataOutputStream (sktl.getOutputStream()) ;
doubleDatal = in.readDouble () ;
out.writeDouble (doubleData?) ;

July 27, 2006 Sara Sprenkle - CISC370 42

Object Network Streams

We can follow a similar approach if we want
to transfer objects over the network
the objects must be Serializable

Socket sktl = new Socket (“localhost”,1998);
ObjectInputStream in =

new ObjectInputStream (sktl.getInputStream());
ObjectOutputStream out =

new ObjectOutputStream (sktl.getOutputStream());
chickenl = (Chicken)in.readObject ();
out.writeObject (chicken?);

July 27, 2006 Sara Sprenkle - CISC370 43

Socket Timeouts

In a real-life situation, reading from a
socket indefinitely is a bad idea

the network could go down, causing the
program to wait on the socket forever.
Java supports a timeout value

If the program has been waiting for the socket
for the specified timeout interval, a
Interruptedl OException is generated

Timeout value is set by calling setSoTimeout()
on the socket

July 27, 2006 Sara Sprenkle - CISC370 44

Socket Timeouts

Socket scktl = new Socket (. . .);
scktl.setSoTimeout (10000); // 10 second timeout

try {
String line;
while ((line = in.readLine()) != null)
{ process received data }
}
catch (InterruptedException)
{
System.out.println (
“The socket timeout has been reached.”);

July 27, 2006 Sara Sprenkle - CISC370 45

Socket Timeout Limitations

You need to have a Socket object
established to call setSoTimeout(), but the
Socket constructor will block until the socket
is initially connected

Creating a timeout on the socket constructor
was added in Java 2 1.3

If we didn’t have this ability, the best solution
would be to attempt to construct the socket in a
separate thread and then wait for that thread to
either complete or timeout

July 27, 2006 Sara Sprenkle - CISC370 46

Socket Construction Timeouts

Construct a new class SocketOpener

a static method openSocket()

Attempts to open a stream socket to a specified
host and port number for up to a specified
timeout interval

Returns a socket or a null Socket reference

July 27, 2006 Sara Sprenkle - CISC370 47

class SocketOpener implements Runnable {
private String host; private int port;
private Socket socket;
public static Socket openSocket (String host,
int port, int timeout) {
SocketOpener o = new SocketOpener (host, port);
Thread t = new Thread(o);
t.start();
try { t.Jjoin(timeout); }
catch (InterruptedException exp) { }
return o.getSocket(); }
public SocketOpener (String host, int port) {
socket = null;
this.host = host; this.port = port; }
public void run() {
try {
socket = new Socket (host, port);
} catch (InterruptedException exp) { } }
public Socket getSocket ()

{ return socket; }
} July 27, 2006 Sara Sprenkle - CISC370 48

The SocketOpener Class

When openSocket() is called, the
SocketOpener class starts a new thread that
attempts to open the socket
new thread calls the blocking constructor for the
socket
The main thread calls join() on the new
thread causing it to wait
the new thread to complete, returning the newly
created socket

the join timeout to expire, returning null for the
socket reference

July 27, 2006 Sara Sprenkle - CISC370 49

The SocketOpener Class

User-defined SocketOpener class
successfully implements a timeout-enabled
socket creation mechanism

Provides the ability to timeout a socket
construction

Not natively possible in the Java language
This class can be very useful if a connection
to the server may not be successfully
established

July 27, 2006 Sara Sprenkle - CISC370 50

Higher Level Network Programming

Socket-level programming is quite powerful
because your application directly controls what is
sent and directly receives what is received

not very convenient to transfer network files using a
well-known protocol such as HTTP

your application would need to implement the HTTP
protocol (i.e., generate headers and correctly format the
HTTP packets)

Java has URL-based network communications

July 27, 2006 Sara Sprenkle - CISC370 51

URL: Uniform Resource Locator

URLs have two main components
the protocol name
the resource name
To URL for the file named index.html on the

host java.sun.com and that HTTP should be
used to retrieve it

http://java.sun.com/index.html

To retrieve the same file using FTP

ftp://java.sun.com/index.html

July 27, 2006 Sara Sprenkle - CISC370 52

URL Resources

The format of the resource field in a URL is
dependent on the protocol being used, but
most (including HTTP) include the following
components

host name the resource is located on

filename (full path to the resource on the host)

port number to connect to (typically optional)

HTTP default: 80
a reference (such as a tag in an HTML file)

July 27, 2006 Sara Sprenkle - CISC370 53

Creating a URL Object

Java abstracts the URL in the URL class

To create an object representing a URL,
pass the string of the URL to the constructor

URL javaPage = new URL(“http://java.sun.com”);

URL file2get = new URL(
“ftp://stimpy.eecis.udel.edu/filel.txt”);

URL fileZput = new URL(
“ftp://stimpy.eecis.udel.edu/file2.txt”);

July 27, 2006 Sara Sprenkle - CISC370 54

Relative URLs

Relative URLs are URL objects constructed
relative to another URL object

Suppose your program needs to create URL
objects for these two network resources

http://www.cis.udel.edu/filel
http://www.cis.udel.edu/file?2

Create a common URL and then relative URLs for
differences...

URL baseURL = new URL (“http://www.cis.udel.edu”);
URL filelURL new URL (baseURL, “filel”);
URL file2URL new URL (baseURL, “file2”);

July 27, 2006 Sara Sprenkle - CISC370 55

Relative URLs

Relative URLs are very useful when a
certain resource has a reference contained
in it
Example: an anchor in an HTTP document
Suppose the index.html file at java.sun.com
has an anchor named DOWNLOADS in it
To construct the appropriate URL

URL javaURL = new URL (“http://java.sun.com”);
URL indexURL = new URL (javaURL, “index.html”);
URL downloadsURL = new URL (

indexURL, “#DOWNLOADS”) ;

July 27, 2006 Sara Sprenkle - CISC370 56

URLs with Specific Ports

Possible to construct a URL for a specific
port number

Suppose a host has two web servers, one
on the traditional port 80 and another on
port 8080

To retrieve the file index.html from the port

8080 web server
URL newURL = new URL (“http”,
“128.4.133.74”, 8080, “/index.html”);

Constructs the URL:
http://128.4.133.74:8080/index.html

July 27, 2006 Sara Sprenkle - CISC370 57

URLs and Exceptions

Creating a URL object can throw a
MalformedURLEXxception if any of the
constructor arguments are null or refer to an
unknown protocol

URL construction must be placed inside a
try/catch block

try {
URL myURL = new URL (. . .);
}
catch (MalformedURLException exp) {
handle the malformed URL exception here

}

July 27, 2006 Sara Sprenkle - CISC370 58

URL Getter/Accessor Methods

URL class’s accessor methods allow all of
the information about the resource it
represents to be obtained

getProtocol() returns the URL’s protocol

getHost() returns the URL'’s host

getFile() returns the URL'’s filename

getPort() returns the URL’s port

getRef() returns the URL’s reference

July 27, 2006 Sara Sprenkle - CISC370

59

URL complexURL = new URL (
“http://128.4.133.74"
+ “:8080/CPM/grader.html#BOTTOM”) ;

complexURL.getProtocol () ;

// returns “http”
complexURL.getHost () ;

// returns “128.4.133.74"
complexURL.getFile () ;

// returns “/CPM/grader.html”
complexURL.getPort () ;

// returns 8080
complexURL.getRef () ;

// returns “BOTTOM”

July 27, 2006 Sara Sprenkle - CISC370

60

Reading Directly from a URL

After a URL object has been created, the program

can read the resource represented by the URL
Call openStream() to obtain an InputStreamReader
object

We can construct a URL object to index.html at

open an InputStreamReader on that resource (file)
attach a BufferedReader to that reader
read the index.html file

copy everything that is read to the standard output
stream (the screen)

July 27, 2006 Sara Sprenkle - CISC370 61

This program will display the contents of the file index.html
located at www.yahoo.com to the default output stream.

import java.io.*;
import java.net.*;

public class URLReader {
public static void main (String[] args) {
URL yahoo = new URL (“http://www.yahoo.com”) ;
BufferedReader in = new BufferedReader (
new InputStreamReader (
yahoo.openStream())) ;

String inputLine;
while ((inputlLine = in.readLine()) != null)
System.out.println (inputLine) ;

in.close();

) Not showing the try/catch
URLReader.java

July 27, 2006 Sara Sprenkle - CISC370 62

URL vs. Socket Programming

Could write program without using the URL
classes

parse the URL string

lookup the hostname

open a socket

connect to the host using the appropriate port

generate appropriate commands to go to the
HTTP server on the host

open a receive stream
process the incoming data

July 27, 2006 Sara Sprenkle - CISC370 63

URL vs. Socket Programming

Details (specifically those of the HTTP
protocol) are all handled by the URL class

encapsulates all of these socket-level details and
programmer doesn’t have to write them (or mess
them up!)

URL class knows about the HTTP and FTP
protocols

Same approach could be used to retrieve files
using the FTP protocol as well

Also a java.net.HttpUrlConnection class

July 27, 2006 Sara Sprenkle - CISC370 64

Datagram Communications

Let’s look at connectionless communications
using datagrams

specifies the creation of individual messages,
called datagrams, which are transmitted one at a
time, from one host to the other

July 27, 2006 Sara Sprenkle - CISC370 65

Datagram Communications

Two primary classes deal with datagram
communications

DatagramPacket and DatagramSocket
No server socket class
No connections in datagram communications
packets are simply transmitted from one host to
another
To transmit a datagram, the program should
first construct a DatagramPacket object and
then deliver it to a DatagramSocket

July 27, 2006 Sara Sprenkle - CISC370 66

Constructing a Datagram

Call the constructor for DatagramPacket,
passing it four pieces of data:

a byte array of data to be transmitted

the number of bytes of data

the internet address of the host to send the
data to

the port number to send the data to on the
receiving host

July 27, 2006 Sara Sprenkle - CISC370 67

Constructing a Datagram

To construct a datagram packet with

data contained in a byte array named
byte array
of 50 bytes

transmitted to a host with hostname “localhost”
at port number 1998

InetAddress client addr = InetAddress.getByName (
“localhost”);

DatagramPacket DGtobeSent = new DatagramPacket (
byte array,
50,
client addr,

1998) ;
July 27, 2006 Sara Sprenkle - CISC370 68

Constructing a Datagram Socket

Call the constructor by passing it the port
number

DatagramSocket sckl = new DatagramSocket (1998);
A datagram socket can also be

constructed without passing it a port
number

allows the system to pick a random port

number...
DatagramSocket sckl = new DatagramSocket ()
July 27, 2006 Sara Sprenkle - CISC370 69

Sending a Datagram Packet

After a datagram socket has been
constructed, datagram packets can be
sent using this socket.

Call send() on the datagram socket with
the datagram packet that is to be sent...

// send the datagram packet using
// the datagram socket
sckl.send (DGtobeSent) ;

July 27, 2006 Sara Sprenkle - CISC370 70

Receiving a Datagram Packet

Datagram socket can also receive a
datagram packet

Construct a DatagramPacket object

Call receive() on the datagram socket

receives a datagram packet directed to the port
associated with the socket

copies the received packet into the specified
DatagramPacket object

July 27, 2006 Sara Sprenkle - CISC370 71

Receiving a Datagram Packet

// open a socket
DatagramSocket sckl = new DatagramSocket (1998);

// setup the packet
byte buffer[] = new byte[1000];

DatagramPacket received = new DatagramPacket (
buffer, buffer.length);

// wait for a packet to arrive
sckl.receive (received);

// now, process the packet

July 27, 2006 Sara Sprenkle - CISC370 72

Example: An Echo Server

Write a program that will listen for datagram
packets on port 1998 and then echo the
packets back to the host they originated from

July 27, 2006

Sara Sprenkle - CISC370 73

DatagramSocket sckl = new DatagramSocket (1998);
while (true) {
try {

}

}
}

July 27, 2006

// receive a datagram packet

byte buffer[] = new byte[500];

DatagramPacket received = new DatagramPacket (
buffer, buffer.length);

sckl.receive (received) ;

// create an echo packet and sent it

DatagramPacket tobeSent = new DatagramPacket (
received.getData(),
received.getLength (),
received.getAddress (),
received.getPort());

sckl.send (tobeSent) ;

catch (IOException expl) {

System.out.println (“Error:” + expl);

Sara Sprenkle - CISC370 74

More General URL Connections

Reading URLs is very simple but becomes more
complex when we want to do both reading and

writing to a URL
Why would we want to write to a URL?

July 27, 2006 Sara Sprenkle - CISC370 75

Dynamic Web Pages

Returned document depends on parameters

passed from user
A user fills out a form to send data to a web server
User sees a number of text boxes, combo boxes, and other Ul

components on a web page

When the user clicks the “Submit” button, the contents of the
text fields and the settings of the combo, check, and radio
buttons, are sent to the server to be processed by a program

The script or application on the server that should
process this data is indicated in the ACTION attribute of

the HTML FORM tag

July 27, 2006 Sara Sprenkle - CISC370 76

Dynamic Web Pages

Client Server

Web Browser Web Web
Server Application

Web browser: makes requests, renders
responses

Web Server: handles static requests
Web Application: handles dynamic requests

July 27, 2006 Sara Sprenkle - CISC370 77

Server-side Processing

Many alternatives for server-side processing
CGls (Common Gateway Interface), written in C or Perl
PHP (Hypertest Preprocessor)
ASPs (Active Server Page)
JSPs/Servlets (more next week)
Same handling process

When the server receives the form data, it launches the
appropriate server-side script/program to handle the data
Script processes the form data and produces another HTML
page that the web server sends back to the browser

Response page can contain new information (usually based on
the form data received) or could simply be an
acknowledgement

July 27, 2006 Sara Sprenkle - CISC370 78

Data / Parameters

Data / parameters are always passed to scripts
in @ name and value pair (similar to a hashtable)
userid = user
passwd = pswd
Let’s look at the two different methods of
transmitting these parameters to the server

July 27, 2006 Sara Sprenkle - CISC370 79

The GET Method

Attaches the parameters to the end of the URL

Parameter list starts with a ‘?’

Individual parameters are separated by a ‘&’
URL encoding: Need to encode the parameters
so that requests work correctly in the HTTP
protocol
To encode the parameters

Replace any spaces with a ‘+’

Replace all non-alphanumeric characters with a ‘%’
followed by the 2-digit hexadecimal ASCII code of the

character

July 27, 2006 Sara Sprenkle - CISC370

80

The GET Method

To encode the parameter bookname equal to
“Mastering C++” and the parameter location
equal to “Newark DE” and pass these
parameters to script.pl at server.udel.edu

http://server.udel.edu/scriptl.pl?bookname=
Mastering+C%2b%2b&location=Newark+DE

Parameter list starts with a ‘?’
Individual parameters are separated by a ‘&’
Handled by your browser automatically

July 27, 2006 Sara Sprenkle - CISC370

81

Java Programming and GET

Construct a URL object that represents
the script and encoded the parameters in
the URL

Connect to that URL and read from it as
before

For example, to code the previous

example and display the returned page...

July 27, 2006 Sara Sprenkle - CISC370

82

This program uses the GET method and then reads what the
script returns and displays it to the standard output stream.

public static void main(String[] args)
{
URL script = new URL (
“http://server.udel.edu/scriptl.pl”);
URL sendToScript = new URL (
script,
“?bookname=" + “Mastering+C%2d%2d”
+ “glocation="” + “Newark+DE”) ;

BufferedReader in = new BufferedReader (
new InputStreamReader (
sendToScript.openStream())) ;

String inputLine;

while ((inputlLine = in.readLine()) != null)
System.out.println (inputLine) ;

in.close();

}

July 27, 2006 Sara Sprenkle - CISC370 83

The POST Method

Opens an output stream to the URL
connection and writes name/value pairs to
the stream

a connection is established to the resource
represented by the URL (the script)

the name/value pairs are sent to the script
through an output stream, which transmits the
parameters to the script

July 27, 2006 Sara Sprenkle - CISC370 84

Opening a URLConnection

When a URL object is created, no
connection is made
When the openStream() method of the URL
class is called, a connection is made to the

resource represented by the URL and then
an InputStream is constructed and returned

Allows the client to receive information from
the resource (the web page or script)

July 27, 2006 Sara Sprenkle - CISC370 85

Opening a URLConnection

If more than an InputStream is required, a
connection must first be manually
established

Call openConnection() of the URL class

Returns a URLConnection class object, which
is an abstraction of an open, established,
connection

To open a connection to the example script

URL script = new URL (
“http://server.udel.edu/scriptl.pl”);
URLConnection connection =script.openConnection();

July 27, 2006 Sara Sprenkle - CISC370 86

Getting an InputStream

Get the InputStream using getlnputStream()
on the URLConnection object

URLConnection represents an open connection
Equivalent code:

URL script = new URL (
“http://server.udel.edu/scriptl.pl”);
InputStream in = script.openStream() ;

URL script = new URL (
“http://server.udel.edu/scriptl.pl”);
URLConnection openConn = script.openConnection();

InputStream in = openConn.getInputStream() ;

July 27, 2006 Sara Sprenkle - CISC370 87

Getting an Output Stream

Need to construct a URLConnection
object when we need an OutputStream
used to allow the client to send data to the
server, as in the case of server-side scripts
Construct the URLConnection object
(which connects to the resource) and then
call getOutputStream()

returns an OutputStream which allows the
client program to send data to the server-side
script

July 27, 2006 Sara Sprenkle - CISC370 88

The POST Method

The POST method sends CGI parameters to the
script using this approach

The POSTed data must be URL encoded and be
separated using the ‘&’ character.

Suppose script2.pl is also on server.udel.edu and
it is the same as script1.pl, except that it receives
parameters via POST not GET

We can modify our example program to do this...

July 27, 2006 Sara Sprenkle - CISC370 89

This program uses the POST method and then reads what the
script returns and displays it to the standard output stream.

public static void main (String[] args)
{
URL script = new URL (
“http://server.udel.edu/script2.pl”);
URLConnection openConn = script.openConnection();
PrintWriter out = new PrintWriter (
openConn.getOutputStream()) ;
out.print (“bookname=" + “Mastering+C%2d%2d” + “&”);
out.print (“location=" + “Newark+DE” + “\n”);
out.close();
BufferedReader in = new BufferedReader (
new InputStreamReader (
openConn.getInputStream()))
String inputLine;
while ((inputlLine = in.readLine()) != null)
System.out.println (inputLine) ;

in.close();
} July 27, 2006 Sara Sprenkle - CISC370 90

URL Encoding with URLEncoder

You/ your program does not have to manually
replace spaces and non-alphanumeric characters
The URLEncoder class has a static method
encode()

takes a String

returns a URL encoded String
We can modify our program to interpret the first
command-line argument as the bookname and the
second command-line argument as the location,
instead of using hard-coded fields

July 27, 2006 Sara Sprenkle - CISC370 91

This program now sends the first two command-line arguments,
correctly URL encoded, as the parameters to the script.

public static void main(String[] args)
{
URL script = new URL(
“http://server.udel.edu/script2.pl”);
URLConnection openConn = script.openConnection () ;
PrintWriter out = new PrintWriter (
openConn.getOutputStream()) ;
out.print (“bookname=" + URLEncoder.encode (args[0])
out.print (“location=" + URLEncoder.encode (args[1l])
out.close();
BufferedReader in = new BufferedReader (
new InputStreamReader (
openConn.getInputStream()));
String inputLine;

while ((inputlLine = in.readLine()) != null)
System.out.println (inputLine);
in.close();

}
July 27, 2006 Sara Sprenkle - CISC370 92

A Web Server

Receives GET/POST requests from users

Processes requests
Given to appropriate application to handle
PHP, ASP, Java Servlet Container, ...

Handles static requests by sending document to
requestor

Or appropriate error message if the file does not
exist or the file does not have appropriate read
permissions

July 27, 2006 Sara Sprenkle - CISC370 93

A Web Server: Handling Requests

Has one thread per client to handle request
Limit on number of threads, as discussed

Serves files from some directory

My web-accessible files are in
/usa/sprenkle/public_html

But users access with resource name ~sprenkle

Server maintains mapping from ~sprenkle to
appropriate location

July 27, 2006 Sara Sprenkle - CISC370 94

Web Server
At a high-level

Request: GET /~sprenkle/cisc370

HTTP Request
(URL)

File System

HTTP Response
(Document or error)

July 27, 2006 Sara Sprenkle - CISC370

kle/cisc370/index.html

95

Your Multithreaded Web Server

Basically implement what'’s on the previous
slide!

July 27, 2006 Sara Sprenkle - CISC370

96

48

