More I/0, Collections,
Compression

Sara Sprenkle
June 22, 2005

Review

I/O: Streams
Character, Byte

Files
Assignment 2 due

June 22, 2006 Sara Sprenkle - CISC370

A More Connected Stream

/ char
file FilelnputStream [ERIEERIRIWIE LWl DatalnputStream
\ double

FileInputStream reads bytes from the file

BufferedInputStream buffers bytes
speeds up access to the file.

DatalnputStream reads buffered bytes as types

June 22, 2006 Sara Sprenkle - CISC370 3

FYI: Additional I/O Functionality

Java provides classes so that you can
Lock files (java.nio.channels.FileLock)

Coordinates accesses to files
» Multiple programs read/write same file
Depends on OS to enforce locks

Read from random points in the file
Jjava.io.RandomAccessFile

June 22, 2006 Sara Sprenkle - CISC370 4

Parsing Files

Use programs to automate tasks
Often have large amounts of data in files

Java provides classes to make parsing
easier

June 22, 2006 Sara Sprenkle - CISC370 5

StringTokenizer

Lexical analyzer
Parse text

Breaks a string into tokens
Example:

StringTokenizer st = new StringTokenizer ("this is a test");
while (st.hasMoreTokens()) {
System.out.println(st.nextToken()) ;

}

Output: this
is
a

test
June 22, 2006 Sara Sprenkle - CISC370 6

String Tokenizer

Optional constructor: define a delimiter
Default delimiter: " \t\n\r\f”
The first character is a space
Used to separate tokens
Delimiters do not count as tokens
How could you parse a CSV file?

Legacy class
Maintained for backwards compatibility

June 22, 2006 Sara Sprenkle - CISC370

Alternative: use String class

Regular expression:
\\s means whitespace

String test = “this is a test”;

String[] result = test.split ("\\s");

for (int x=0; x<result.length; x++)
System.out.println (result[x]);

Output: this
is
a
test

June 22, 2006 Sara Sprenkle - CISC370

FYI: StreamTokenizer

Tokenize an incoming character stream

Table-driven lexical analyzer
every possible input character has a significance

scanner uses the significance of the current
character to decide what to do

Compiler terminology!

May be useful to parse files
Handle C and C++ style comments

June 22, 2006 Sara Sprenkle - CISC370 9

Cloning

June 22, 2006 Sara Sprenkle - CISC370 10

Object Variable Copying

When making a copy of an object variable,
both the original and the copy refer to the
same object.

If we change the object one of these object
variables refers to, the object the other
variable refers to is also changed

They are the same object

June 22, 2006 Sara Sprenkle - CISC370 1

Object Cloning

To make a new object, clone the object

clone starts in the same state as the current
object but is a different object

Chicken copy = (Chicken)original.clone();
copy.feed();
// original remained unchanged (hasn’t eaten)

June 22, 2006 Sara Sprenkle - CISC370 12

The Protected clone() Method

clone() method is inherited from the Object
superclass
protected

only Chicken objects, subclasses, and members
of package can clone Chicken objects

Object class does not know the actual
structure of its derived classes

Derived classes: every class in the Java
language

June 22, 2006 Sara Sprenkle - CISC370 13

A Problem?

clone() method makes a field-by-field copy
of the object being cloned.

OK if the cloned object has only primitive types
(no objects)
What happens if we attempt to clone an
object that contains another object?

What if we add a field for the Chicken’s
birthdate?

June 22, 2006 Sara Sprenkle - CISC370 14

The Problem with Cloning

Cloning a Chicken object

object variable contained in the Chicken
object is copied and both the original and new
objects have references to the same object.

If we change the GregorianCalendar field
of the cloned object, we change the
original object

June 22, 2006 Sara Sprenkle - CISC370 15

The Problem with Cloning

Chicken

weight:
birthdate Gkl

name:
weight:)
birthdate KN

June 22, 2006 Sara Sprenkle - CISC370 16

Not a Problem Sometimes...

We can see the default cloning object is
considered shallow

Does this matter?

Some objects are immutable
cannot be changed, read-only
String and Date objects

Shallow copy is okay if the object inside the
object to clone is immutable

June 22, 2006 Sara Sprenkle - CISC370 17

A Solution to the Problem

If have mutable objects
the clone() method must be overridden

make a deep copy
Copy subobjects as well.

Example
Copy the GregorianCalendar birthdate object

June 22, 2006 Sara Sprenkle - CISC370 18

Object Cloning

For each programmer-defined class, you
should decide if:

The default (shallow) clone() behavior is good
enough for your class to use

The default clone() method can be “made deep”
by redefining the clone() method to clone()
subobjects as well

the class of objects should not be cloned

June 22, 2006 Sara Sprenkle - CISC370 19

Object Cloning

Default: class should not be cloned

If you choose either of the first two options,
you need to do two things:
The class must implement the Cloneable
interface
Marker interface

The class must redefine the clone() method
with the public access modifier
allows objects to be cloned by any class/object

you can make an overridden method less private
but not more private

June 22, 2006 Sara Sprenkle - CISC370 20

Implementing the clone() Method

If a class is marked as Cloneable, redefine
clone()

even if you want the default shallow copy

class Person implements Cloneable
{
public Object clone ()
{
try |
return super.clone ()
}
catch (CloneNotSupportedException e)
{ return null; }

}

}
June 22, 2006 Sara Sprenkle - CISC370

21

Implementing the clone() Method

class Chicken implements Cloneable
{

public Object clone ()

{

try {
// call Object.clone ()
Chicken cloned = (Chicken)super.clone();

// clone mutable fields
cloned.birthdate =
(GregorianCalendar)birthdate.clone () ;
return cloned;
}
catch (CloneNotSupportedException e)
{ return null; }
}

}
June 22, 2006 Sara Sprenkle - CISC370

22

11

Collections

June 22, 2006 Sara Sprenkle - CISC370

23

Collections

Similar to C++ Standard Template Library
Also known as Containers

group multiple elements into a single unit
store, retrieve, manipulate, and communicate
aggregate data

represent data items that form a natural group
poker hand (a collection of cards)
mail folder (a collection of letters)
telephone directory (a mapping of names to phone
numbers).

Examples: Hashtables, Sets, Vector

June 22, 2006 Sara Sprenkle - CISC370

24

Collections Framework

a unified architecture for representing and
manipulating collections

More than arrays
More flexible, functionality, dynamic sizing

java.util

June 22, 2006 Sara Sprenkle - CISC370 25

Collections Framework

Interfaces
abstract data types that represent collections
collections can be manipulated independently of
implementation

Implementations
concrete implementations of the collection interfaces
reusable data structures

Algorithms

methods that perform useful computations on collections,
e.g., searching and sorting

polymorphic: same method can be used on many different
implementations of the appropriate collection interface

reusable functionality

June 22, 2006 Sara Sprenkle - CISC370 26

Core Collection Interfaces

Encapsulate different types of collections

_
]
l

| I
| Set | | List I | Queue | | SortedMap |
I b
June 22, 2006 Sara Sprenkle - CISC370 27

Generic Collection Interfaces

New to 1.5: Generic Collections
declaration of the Collection interface:
public interface Collection<E>...
<E> means interface is generic for element class
specify the type of object when declare a Collection

allows the compiler to verify that the type of object you
put into the collection is correct

reduces errors at runtime

Example, a hand of cards
List<Card> hand = new List<Card>():;

Make sure put in, get out appropriate type

June 22, 2006 Sara Sprenkle - CISC370 28

14

L.ist Interface

An ordered collection of elements

Can contain duplicate elements

Has control over where objects are stored in the list
boolean add (Object o)

Boolean so that List can refuse some elements
e.g., refuse adding null elements

Object get (int index)

Returns elements at the position index
int size ()

Returns the number of elements in the list
And more! (contains, remove, toArray, ...)

June 22, 2006 Sara Sprenkle - CISC370 29

List Implementations

ArraylList

Resizable array
Used most frequently
Fast

LinkedList

Use if adding elements to beginning of list
Use of often delete from middle of list

cards.Deal.java
June 22, 2006 Sara Sprenkle - CISC370 30

Implementation vs. Interface

Implementation choice affects only performance

Preferred style
choose an implementation
assign the new collection to a variable of the
corresponding interface type
or pass the collection to a method expecting an argument
of the interface type
Why?
Program does not depend on methods in a given
implementation
Programmer can change implementations
performance concerns or behavioral details

June 22, 2006 Sara Sprenkle - CISC370 31

Set Interface

No duplicate elements

Needs to be able to determine if two elements are
“logically” the same (equals method)

Models mathematical set abstraction
boolean add (Object o)

Boolean so that Set can refuse some elements
e.g., refuse adding null elements

int size ()

Returns the number of elements in the list
Note: no get method -- get #3 from the set?
And more! (contains, remove, toArray, ...)

June 22, 2006 Sara Sprenkle - CISC370 32

Set Implementations

HashSet
Hash table
Used more frequently
Faster than TreeSet
No ordering
TreeSet
Tree
Sorts

FindDuplicates.java

June 22, 2006 Sara Sprenkle - CISC370 33

Map Interface

Maps keys to values
No duplicate keys

Each key maps to at most one value
Object put (Object key, Object
value)

Returns old value that key mapped to
Object get (Object key)

Returns value at that key
Set keySet ()

Returns the set of keys

June 22, 2006 Sara Sprenkle - CISC370 34

Map Implementations

HashMap
Fast
TreeMap
Sorting
Key-ordered iteration
LinkedHashMap
Fast
Insertion-order iteration
Remove stale mappings --> custom caching

June 22, 2006 Sara Sprenkle - CISC370 35

Declaring Maps

Declare types for both keys and values
Class HashMap<K, V>

Map<String, List<String>> map
= new HashMap<String, List<String>>();

Keys are Strings
Values are Lists of Strings

June 22, 2006 Sara Sprenkle - CISC370 36

Traversing Collections (1)

For-each loop:
for (Object o : collection)

System.out.println (o) ;

Valid for all Collections
Maps (and its subclasses) are not Collections

But, Map’s keySet() is a Set and values() is a
Collection

June 22, 2006 Sara Sprenkle - CISC370 37

Traversing Collections: Iterators

Java Interface
Same idea as C++ iterators
Object next ()

get the next element
boolean hasNext ()

are there more elements?
void remove ()

remove the previous element

Only safe way to remove elements during iteration
Not known what will happen if remove elements in for-each
loop

June 22, 2006 Sara Sprenkle - CISC370 38

Iterator: Like a Cursor
Always between two elements

Element(0) Element(1) Element{(2) Element(3)

Index: 0O 1 2 3 4

June 22, 2006 Sara Sprenkle - CISC370 39

Polymorphic Filter Algorithm

static void filter (Collection c) {
Iterator i = c.iterator();
while (i.hasNext ()) {
// if the next element does not
// adhere to the condition, remove it
if (!cond(i.next())) {

i.remove () ;

June 22, 2006 Sara Sprenkle - CISC370 40

20

Traversing Lists: List Iterator

Methods to traverse list backwards
listIterator (int position)
Pass in size() as index to get at end of list
hasPrevious ()

previous ()

Used for insertion/modification/deletion in

linked lists in the middle
Element(0) Element{1) Element(2) Element(3)

Index: 0O 1 2 3 4

June 22, 2006 Sara Sprenkle - CISC370 41

Enumeration

Legacy class
Similar to Iterator
boolean hasMoreElements ()

Object nextElement ()
Longer method names
Doesn’t have remove operation

June 22, 2006 Sara Sprenkle - CISC370 42

Collection classes to avoid

Synchronized classes
For multiple threads sharing same collection
Slow down typical programs
e.g., Vector, Hashtable
See java.util.concurrent

June 22, 2006 Sara Sprenkle - CISC370 43

Utility Class: Collections

Similar to Arrays class

Contains methods for
Binary searching
Sorting
Min/max finding (“extremes”)
Reversing
Shuffling

June 22, 2006 Sara Sprenkle - CISC370 44

Alternative Sorting

What if object is Comparable but does not
sort the way you want?
Special case
Don’t want to change class
Don’t have access to class
e.g., sort strings so capital, lowercase letters are
the same

Use Comparator interface

June 22, 2006 Sara Sprenkle - CISC370 45

Comparator Interface

Declares two methods:
int compare (Object ol, Object 02)

compare two objects and return a value as if we called
ol.compareTo (02)

boolean equals (Object other)
check to see if this Comparator equals other
Overloaded versions of sort in Arrays and
Collections
Arrays: void sort (Object[] array, Comparator
c)

Collections: void sort (Collection col,

Comparator c)) .
ChickenComparator.java
June 22, 2006 Sara Sprenkle - CISC370 46

Localization/Internationalization

Part of java.util

Customize how data is presented and
formatted

Use Locale objects

Specify language, geographic region
Calendar, GregorianCalendar
Currency
Date
TimeZone

June 22, 2006 Sara Sprenkle - CISC370 47

Compression

June 22, 2006 Sara Sprenkle - CISC370 48

Compression

Reduce the size of files
While not losing data!
Easier to transport over the network
Often used in conjunction with archival
Archive: merge multiple files into one file
In our assignment instructions in UNIX
Use tar to archive the assignment (assignx.tar)

Use gzip to compress the assignment
(assignx.tar.gz)

June 22, 2006 Sara Sprenkle - CISC370 49

Compression: java.util.zip

GZIP compression
GZIPInputStream
GZIPOutputStream
Standard filtered stream

you don't do anything special!

June 22, 2006 Sara Sprenkle - CISC370 50

ZIP files

ZIP files
Both archival and compression
Used in WinZip
Supports encryption
Tar/GZIP typically gets better compression
i.e., smaller files

Better to zip all together rather than zip one file
at a time

ZIP allows random access to file

June 22, 2006 Sara Sprenkle - CISC370 51

ZIP files

Each file within a ZIP archive is represented
using a ZipEntry

Set the filename of a ZipEntry using a
contructor

Get the name and uncompressed size using
the getName () and getSize () methods

June 22, 2006 Sara Sprenkle - CISC370 52

Reading Zip Files

Method 1: ZipFile class
Create a ZipFile object for your file
pass it the File or a String

Get an Enumeration containing instances of
ZipEntry with entries()

Get an InputStream for a single entry by calling
getinputStream(ZipEntry ze)

June 22, 2006 Sara Sprenkle - CISC370 53

Reading Zip Files

Method 2: ZiplnputStream class
Create a ZiplnputStream
Connect it to an existing file stream
Read the entries in sequence:

Get a reference to the next ZipEntry by calling
getNextEntry()

Use the ZiplnputStream to read from this entry
> it returns -1 at the end of the entry rather than the zip file
» close the entry with closeEntry()

June 22, 2006 Sara Sprenkle - CISC370 54

Writing ZIP files

Use the ZipOutputStream class

Like the inverse of ZiplnputStream:
putNextEntry()
Typical OutputStream methods
closeEntry()

June 22, 2006 Sara Sprenkle - CISC370

55

3 Week Checklist

Primitive types
Object-oriented concepts
Lots of I/0O

Parsing
Lots of Collections
Serialization
Compression

Helper methods: sorting, searching made
easy

Your job: representing data, leverage classes

June 22, 2006 Sara Sprenkle - CISC370

56

Assignment 3

Applying streams and collections to your
media library

Code submission

New versions of your classes --> New package

June 22, 2006 Sara Sprenkle - CISC370

57

