
1

11

More I/O, Collections,More I/O, Collections,
CompressionCompression

Sara SprenkleSara Sprenkle

June 22, 2005June 22, 2005

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 22

ReviewReview

•• I/O: StreamsI/O: Streams
Character, ByteCharacter, Byte

•• FilesFiles

•• Assignment 2 dueAssignment 2 due

2

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 33

A More Connected StreamA More Connected Stream

•• FileInputStream FileInputStream reads bytes from the filereads bytes from the file
•• BufferedInputStream BufferedInputStream buffers bytesbuffers bytes

 speeds up access to the file.speeds up access to the file.

•• DataInputStream DataInputStream reads buffered bytes as typesreads buffered bytes as types

FileInputStream DataInputStream
double

char

file BufferedInputStream

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 44

FYI: Additional I/O FunctionalityFYI: Additional I/O Functionality

•• Java provides classes so that you canJava provides classes so that you can
 Lock files (Lock files (java.java.nionio.channels..channels.FileLockFileLock))

•• Coordinates accesses to filesCoordinates accesses to files
Multiple programs read/write same fileMultiple programs read/write same file

•• Depends on OS to enforce locksDepends on OS to enforce locks

Read from random points in the fileRead from random points in the file
••java.java.ioio..RandomAccessFileRandomAccessFile

3

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 55

Parsing FilesParsing Files

•• Use programs to automate tasksUse programs to automate tasks

•• Often have large amounts of data in filesOften have large amounts of data in files

•• Java provides classes to make parsingJava provides classes to make parsing
easiereasier

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 66

StringTokenizerStringTokenizer

•• Lexical analyzerLexical analyzer
Parse textParse text

•• Breaks a string into Breaks a string into tokenstokens

•• ExampleExample::
StringTokenizer st = new StringTokenizer("this is a test");
while (st.hasMoreTokens()) {
 System.out.println(st.nextToken());
}

this
is
a
test

Output:

4

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 77

String String TokenizerTokenizer

•• Optional constructor: define a delimiterOptional constructor: define a delimiter
Default delimiter: Default delimiter: " \t\n\r\f”

• The first character is a space

Used to separate tokens

Delimiters do not count as tokens

How could you parse a CSV file?

•• Legacy classLegacy class
Maintained for backwards compatibilityMaintained for backwards compatibility

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 88

Alternative: use String classAlternative: use String class

String test = “this is a test”;
String[] result = test.split("\\s");
for (int x=0; x<result.length; x++)
 System.out.println(result[x]);

Regular expression:
\\s means whitespace

this
is
a
test

Output:

5

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 99

FYI:FYI: StreamTokenizer StreamTokenizer

•• Tokenize an incoming character streamTokenize an incoming character stream

• Table-driven lexical analyzer
every possible input character has a significance

 scanner uses the significance of the current
character to decide what to do

• Compiler terminology!

• May be useful to parse files
Handle C and C++ style comments

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1010

CloningCloning

6

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1111

Object Variable CopyingObject Variable Copying

•• When making a copy of an object variable,When making a copy of an object variable,
both the original and the copy refer to theboth the original and the copy refer to the
same object.same object.

•• If we change the object one of these objectIf we change the object one of these object
variables refers to, the object the othervariables refers to, the object the other
variable refers to is also changedvariable refers to is also changed
 They are the same objectThey are the same object

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1212

Object CloningObject Cloning

•• To make a new object, clone the objectTo make a new object, clone the object
 clone starts in the same state as the currentclone starts in the same state as the current

object but is a different objectobject but is a different object

Chicken copy = (Chicken)original.clone();
copy.feed();
// original remained unchanged (hasn’t eaten)

7

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1313

The Protected clone() MethodThe Protected clone() Method
•• cloneclone() method is inherited from the Object() method is inherited from the Object

superclasssuperclass
protectedprotected
only Chicken objects, subclasses, and membersonly Chicken objects, subclasses, and members

of package can clone Chicken objectsof package can clone Chicken objects

•• Object class does not know the actualObject class does not know the actual
structure of its derived classesstructure of its derived classes
Derived classes: every class in the JavaDerived classes: every class in the Java

languagelanguage

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1414

A Problem?A Problem?
•• clone() method makes a clone() method makes a field-by-fieldfield-by-field copy copy

of the object being cloned.of the object being cloned.
OK if the cloned object has OK if the cloned object has only primitiveonly primitive types types

(no objects)(no objects)

•• What happens if we attempt to clone anWhat happens if we attempt to clone an
object that contains another object?object that contains another object?
 What if we add a field for the Chicken What if we add a field for the Chicken’’ss

birthdatebirthdate??

8

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1515

The Problem with CloningThe Problem with Cloning
•• Cloning a Chicken objectCloning a Chicken object

object variable contained in the Chickenobject variable contained in the Chicken
object is copied and object is copied and bothboth the original and new the original and new
objects have references to the objects have references to the samesame object. object.

•• If we change the If we change the GregorianCalendar GregorianCalendar fieldfield
of the cloned object, we change theof the cloned object, we change the
original objectoriginal object

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1616

The Problem with CloningThe Problem with Cloning

Gregorian Calendar

Chicken

name:
weight:
birthdate:

Chicken

name:
weight:
birthdate:

Foggy

Foggy

10

10

original

clone

9

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1717

Not a Problem SometimesNot a Problem Sometimes……

•• We can see the default cloning object isWe can see the default cloning object is
considered considered shallowshallow
Does this matter?Does this matter?

•• Some objects are Some objects are immutable
 cannot be changed, read-onlycannot be changed, read-only

String and Date objectsString and Date objects

Shallow copy is okay if the object inside theShallow copy is okay if the object inside the
object to clone is immutableobject to clone is immutable

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1818

A Solution to the ProblemA Solution to the Problem

•• If have mutable objectsIf have mutable objects
 the clone() method must be overriddenthe clone() method must be overridden

make a make a deepdeep copy copy
•• CopyCopy subobjectssubobjects as well.as well.

•• ExampleExample
Copy the Copy the GregorianCalendar birthdate GregorianCalendar birthdate objectobject

10

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1919

Object CloningObject Cloning

•• For each programmer-defined class, youFor each programmer-defined class, you
should decide if:should decide if:
 The default (shallow) clone() behavior is goodThe default (shallow) clone() behavior is good

enough for your class to useenough for your class to use

 The default clone() method can be The default clone() method can be ““made deepmade deep””
by redefining the clone() method to clone()by redefining the clone() method to clone()
subobjects as wellsubobjects as well

 the class of objects should not be clonedthe class of objects should not be cloned

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2020

Object CloningObject Cloning
•• Default: class should not be clonedDefault: class should not be cloned
•• If you choose either of the first two options,If you choose either of the first two options,

you need to do two things:you need to do two things:
 The class must implement the The class must implement the CloneableCloneable

interfaceinterface
•• Marker interfaceMarker interface

 The class must The class must redefineredefine the the cloneclone() method() method
with the with the publicpublic access modifier access modifier
•• allows objects to be cloned by any class/objectallows objects to be cloned by any class/object
• you can make an overridden method less private

but not more private

11

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2121

Implementing the clone() MethodImplementing the clone() Method

•• If a class is marked as If a class is marked as CloneableCloneable, , redefineredefine
clone()clone()
 even if you want the default shallow copyeven if you want the default shallow copy

class Person implements Cloneable
{

public Object clone()
{

try {
return super.clone()

}
catch (CloneNotSupportedException e)
{ return null; }

}
}

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2222

Implementing the clone() MethodImplementing the clone() Method
class Chicken implements Cloneable
{

public Object clone()
{

 try {
 // call Object.clone()
 Chicken cloned = (Chicken)super.clone();

 // clone mutable fields
 cloned.birthdate =

 (GregorianCalendar)birthdate.clone();
 return cloned;
}
catch (CloneNotSupportedException e)
 { return null; }
}

}

12

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2323

CollectionsCollections

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2424

CollectionsCollections
• Similar to C++ Standard Template Library

•• Also known as Also known as ContainersContainers

• group multiple elements into a single unit

• store, retrieve, manipulate, and communicate
aggregate data

• represent data items that form a natural group
 poker hand (a collection of cards)

 mail folder (a collection of letters)

 telephone directory (a mapping of names to phone
numbers).

• Examples: Hashtables, Sets, Vector

13

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2525

Collections FrameworkCollections Framework

• a unified architecture for representing and
manipulating collections

• More than arrays
More flexible, functionality, dynamic sizing

• java.util

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2626

Collections FrameworkCollections Framework
• Interfaces

 abstract data types that represent collections
 collections can be manipulated independently of

implementation

• Implementations
 concrete implementations of the collection interfaces
 reusable data structures

• Algorithms
 methods that perform useful computations on collections,

e.g., searching and sorting
 polymorphic: same method can be used on many different

implementations of the appropriate collection interface
 reusable functionality

14

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2727

Core Collection InterfacesCore Collection Interfaces

•• Encapsulate different types of collectionsEncapsulate different types of collections

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2828

Generic Collection InterfacesGeneric Collection Interfaces
• New to 1.5: Generic Collections

 declaration of the Collection interface:

 public interface Collection<E>...
• <E> means interface is generic for element class

• specify the type of object when declare a Collection
 allows the compiler to verify that the type of object you

put into the collection is correct
• reduces errors at runtime

• Example, a hand of cards
ListList<Card> hand = new <Card> hand = new ListList<Card>();<Card>();

Make sure put in, get out appropriate typeMake sure put in, get out appropriate type

15

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2929

ListList Interface Interface
•• An ordered collection of elementsAn ordered collection of elements
•• Can contain duplicate elementsCan contain duplicate elements
•• Has control over where objects are stored in the listHas control over where objects are stored in the list
•• boolean boolean add(Object o)add(Object o)

 Boolean so that List can refuse some elementsBoolean so that List can refuse some elements
•• e.g., refuse adding null elementse.g., refuse adding null elements

•• Object get(Object get(intint index) index)
 Returns elements at the position indexReturns elements at the position index

•• intint size() size()
 Returns the number of elements in the listReturns the number of elements in the list

•• And more! (contains, remove, And more! (contains, remove, toArraytoArray, , ……))

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3030

ListList Implementations Implementations

••ArrayListArrayList

Resizable arrayResizable array

Used most frequentlyUsed most frequently

 FastFast

••LinkedListLinkedList

Use if adding elements to beginning of listUse if adding elements to beginning of list

Use of often delete from middle of listUse of often delete from middle of list

cards.Deal.java

16

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3131

Implementation Implementation vsvs. Interface. Interface
• Implementation choice affects only performance

• Preferred style
 choose an implementation

 assign the new collection to a variable of the
corresponding interface type
• or pass the collection to a method expecting an argument

of the interface type

• Why?
 Program does not depend on methods in a given

implementation

 Programmer can change implementations
• performance concerns or behavioral details

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3232

SetSet Interface Interface

•• No duplicate elementsNo duplicate elements
 Needs to be able to determine if two elements areNeeds to be able to determine if two elements are

““logicallylogically”” the same (the same (equalsequals method) method)

•• Models mathematical set abstractionModels mathematical set abstraction
•• booleanboolean add(Object o) add(Object o)

 Boolean so that Boolean so that SetSet can refuse some elements can refuse some elements
•• e.g., refuse adding null elementse.g., refuse adding null elements

•• intint size() size()

 Returns the number of elements in the listReturns the number of elements in the list
•• Note: no get method -- get #3 from the set?Note: no get method -- get #3 from the set?
•• And more! (contains, remove,And more! (contains, remove, toArray toArray, , ……))

17

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3333

SetSet Implementations Implementations
•• HashSetHashSet

 Hash tableHash table
 Used more frequentlyUsed more frequently
 Faster than Faster than TreeSetTreeSet
 No orderingNo ordering

•• TreeSetTreeSet

 TreeTree
 SortsSorts

FindDuplicates.java

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3434

MapMap Interface Interface

•• Maps keys to valuesMaps keys to values
•• No duplicate keysNo duplicate keys

Each key maps to at most one valueEach key maps to at most one value

••Object put(Object key, ObjectObject put(Object key, Object
value)value)
Returns old value that key mapped toReturns old value that key mapped to

••Object get(Object key)Object get(Object key)
Returns value at that keyReturns value at that key

••SetSet keySet keySet()()
Returns the set of keysReturns the set of keys

18

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3535

MapMap Implementations Implementations

•• HashMapHashMap
 FastFast

•• TreeMapTreeMap
SortingSorting
Key-ordered iterationKey-ordered iteration

•• LinkedHashMapLinkedHashMap
 FastFast
 Insertion-order iterationInsertion-order iteration
Remove stale mappings --> custom cachingRemove stale mappings --> custom caching

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3636

Declaring MapsDeclaring Maps

•• Declare types for both keys and valuesDeclare types for both keys and values
•Class HashMap<K,V>

Map<String, List<String>> mapMap<String, List<String>> map

= new= new HashMap HashMap<String, List<String>>();<String, List<String>>();

Keys are Strings
Values are Lists of Strings

19

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3737

Traversing Collections (1)Traversing Collections (1)

•• For-each loop:For-each loop:
for (Object o : collection)

 System.out.println(o);

•• Valid for all CollectionsValid for all Collections
Maps (and its subclasses) are not Collections

But, Map’s keySet() is a Set and values() is a
Collection

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3838

Traversing Collections:Traversing Collections: Iterators Iterators
•• Java InterfaceJava Interface

•• Same idea as C++Same idea as C++ iterators iterators
•• Object next()Object next()

 get the next elementget the next element
•• boolean hasNextboolean hasNext()()

 are there more elements?are there more elements?
•• void remove()void remove()

 remove the previous elementremove the previous element
 Only Only safesafe way to remove elements during iteration way to remove elements during iteration

•• Not known what will happen if remove elements in for-eachNot known what will happen if remove elements in for-each
looploop

20

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3939

IteratorIterator: Like a Cursor: Like a Cursor

•• Always between two elementsAlways between two elements

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4040

Polymorphic Filter AlgorithmPolymorphic Filter Algorithm

static void filter(Collection c) {

 Iterator i = c.iterator();

while(i.hasNext()) {

// if the next element does not

// adhere to the condition, remove it

 if (!cond(i.next())) {

 i.remove();

}

 }

}

21

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4141

Traversing Lists: ListTraversing Lists: List Iterator Iterator

•• Methods to traverse list backwardsMethods to traverse list backwards
 listIteratorlistIterator((intint position) position)

Pass in size() as index to get at end of listPass in size() as index to get at end of list
 hasPrevioushasPrevious()()

 previous()previous()

•• Used for insertion/modification/deletion inUsed for insertion/modification/deletion in
linked lists in the middlelinked lists in the middle

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4242

EnumerationEnumeration

•• Legacy classLegacy class

•• Similar to Similar to IteratorIterator
•boolean hasMoreElements()
•Object nextElement()
• Longer method names

• Doesn’t have remove operation

22

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4343

Collection classes to avoidCollection classes to avoid

•• Synchronized classesSynchronized classes
 For multiple threads sharing same collectionFor multiple threads sharing same collection

Slow down typical programsSlow down typical programs

 e.g., Vector, e.g., Vector, HashtableHashtable

See java.See java.utilutil.concurrent.concurrent

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4444

Utility Class: CollectionsUtility Class: Collections
•• Similar to Similar to ArraysArrays class class

•• Contains methods forContains methods for
Binary searchingBinary searching
SortingSorting
Min/max finding (Min/max finding (““extremesextremes””))
ReversingReversing
ShufflingShuffling
……

23

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4545

Alternative SortingAlternative Sorting

•• What if object is What if object is ComparableComparable but does not but does not
sort the way you want?sort the way you want?
Special caseSpecial case

•• DonDon’’t want to change classt want to change class

•• DonDon’’t have access to classt have access to class

 e.g., sort strings so capital, lowercase letters aree.g., sort strings so capital, lowercase letters are
the samethe same

•• Use Use ComparatorComparator interface interface

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4646

ComparatorComparator Interface Interface

•• Declares two methods:Declares two methods:
 intint compare(Object o1, Object o2) compare(Object o1, Object o2)

•• compare two objects and return a value as if we calledcompare two objects and return a value as if we called
o1.o1.compareTocompareTo(o2)(o2)

 booleanboolean equals(Object other) equals(Object other)

•• check to see if this Comparator equals check to see if this Comparator equals otherother
•• Overloaded versions of Overloaded versions of sortsort in Arrays and in Arrays and

CollectionsCollections
 Arrays:Arrays: void sort(Object[] array, Comparatorvoid sort(Object[] array, Comparator
c)c)

 Collections:Collections: void sort(Collectionvoid sort(Collection col col,,
Comparator c)Comparator c)

ChickenComparator.java

24

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4747

Localization/InternationalizationLocalization/Internationalization

•• Part of java.Part of java.utilutil
•• Customize how data is presented andCustomize how data is presented and

formattedformatted
•• Use Locale objectsUse Locale objects

Specify language, geographic regionSpecify language, geographic region
•• Calendar, Calendar, GregorianCalendarGregorianCalendar
•• CurrencyCurrency
•• DateDate
•• TimeZoneTimeZone

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4848

CompressionCompression

25

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4949

CompressionCompression

•• Reduce the size of filesReduce the size of files
While While notnot losing data! losing data!
Easier to transport over the networkEasier to transport over the network

•• Often used in conjunction with Often used in conjunction with archivalarchival
Archive: merge multiple files into one fileArchive: merge multiple files into one file

•• In our assignment instructions in UNIXIn our assignment instructions in UNIX
Use Use tartar to to archivearchive the assignment (the assignment (assignxassignx.tar).tar)
Use Use gzipgzip to to compresscompress the assignment the assignment

((assignxassignx.tar..tar.gzgz))

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5050

Compression: Compression: java.java.utilutil.zip.zip
•• GZIP compressionGZIP compression

GZIPInputStreamGZIPInputStream
GZIPOutputStreamGZIPOutputStream
Standard filtered streamStandard filtered stream

•• you don't do anything special!you don't do anything special!

26

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5151

ZIP filesZIP files

•• ZIP filesZIP files
BothBoth archival and compression archival and compression
Used in WinZipUsed in WinZip
Supports encryptionSupports encryption

•• Tar/GZIP typically gets better compressionTar/GZIP typically gets better compression
 i.e., smaller filesi.e., smaller files
Better to zip all together rather than zip one fileBetter to zip all together rather than zip one file

at a timeat a time
•• ZIP allows random access to fileZIP allows random access to file

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5252

ZIP filesZIP files
•• Each file within a ZIP archive is representedEach file within a ZIP archive is represented

using a using a ZipEntryZipEntry
•• Set the filename of aSet the filename of a ZipEntry ZipEntry using a using a

contructorcontructor
•• Get the name and uncompressed size usingGet the name and uncompressed size using

thethe getNamegetName()() and and getSize() methods methods

27

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5353

Reading Zip FilesReading Zip Files

•• Method 1:Method 1: ZipFile class class
Create aCreate a ZipFile ZipFile object for your file object for your file

•• pass it the File or a Stringpass it the File or a String
Get an Enumeration containing instances ofGet an Enumeration containing instances of
ZipEntry with with entries()entries()

Get anGet an InputStream InputStream for a single entry by calling for a single entry by calling
getInputStreamgetInputStream((ZipEntry zeZipEntry ze))

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5454

Reading Zip FilesReading Zip Files
•• Method 2:Method 2: ZipInputStreamZipInputStream class class

 Create a Create a ZipInputStreamZipInputStream
 Connect it to an existing file streamConnect it to an existing file stream
 Read the entries in sequence:Read the entries in sequence:

•• Get a reference to the next Get a reference to the next ZipEntry ZipEntry by callingby calling
getNextEntrygetNextEntry()()

•• Use the Use the ZipInputStreamZipInputStream to read from this entry to read from this entry
 it returns -1 at the end of the entry rather than the zip fileit returns -1 at the end of the entry rather than the zip file
 close the entry withclose the entry with closeEntrycloseEntry()()

28

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5555

Writing ZIP filesWriting ZIP files

•• Use theUse the ZipOutputStream ZipOutputStream classclass
•• Like the inverse ofLike the inverse of ZipInputStream ZipInputStream::

 putNextEntryputNextEntry()()
 Typical Typical OutputStream OutputStream methodsmethods
 closeEntrycloseEntry()()

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5656

3 Week Checklist3 Week Checklist
•• Primitive typesPrimitive types
•• Object-oriented conceptsObject-oriented concepts
•• Lots of I/OLots of I/O

ParsingParsing

•• Lots of CollectionsLots of Collections
•• SerializationSerialization
•• CompressionCompression
•• Helper methods: sorting, searching madeHelper methods: sorting, searching made

easyeasy
•• Your job: representing data, leverage classesYour job: representing data, leverage classes

29

June 22, 2006June 22, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5757

Assignment 3Assignment 3

•• Applying streams and collections to yourApplying streams and collections to your
media librarymedia library

•• Code submissionCode submission
New versions of your classes --> New packageNew versions of your classes --> New package

